ktt算法 约化_推荐系统的多目标优化(4)-PE-LTR

本文介绍了PE-LTR算法,用于解决电商推荐系统中同时优化GMV和CTR的多目标优化问题。该算法基于帕累托最优理论,通过KTT条件推导出求解定理,确保在多目标间的平衡。实验表明,PE-LTR在低CTR损失下优化了GMV,并优于其他多目标优化方法。
摘要由CSDN通过智能技术生成

目录:

[toc]

1. 提出背景

电商场景下,需要同时优化GMV和CTR,但这两个优化目标并不是严格相关的,甚至是冲突的。当CTR/GMV最优时,另一个可能是次优甚至是不好的。

因此,该问题可以看作是寻找帕累托最优的问题来处理。现有的帕累托优化方法有两种,一种是启发式搜索(heuristic search),缺点是不能保证帕累托最优;另一种是标量化方法(scalarization),缺点是需要手动指定权重。

帕累托最优(Pareto Optimum):也称为帕累托效率(Pareto Efficiency)。形象解释的话,在该状态下,“从此以后,非损人不能利己”。

作者在KKT条件下提出PE-LTR(Pareto-Efficient Learning to Rank),有LTR过程优化多个目标。

2. PE-LTR

该算法偏向于理论证明,本节先对算法整体步骤进行描述,然后对其中的关键步骤进行推导。

2.1 算法描述

定义多目标问题的目标函数:

其中,$ L_i(\theta)$ 为单目标的损失函数,$w_i$ 为该目标的权值,满足$\sum_{i=1}^Kw_i=1,w_i \geq c_i$。

用SGD更新参数$\theta$ :

通过 PECsolver算法 更新 k 个 $w_i$,算法如下;

定义帕累托最优条件(Pareto Efficient Condition):

将$w_i=\hat w_i+c_i$代入,得到等价的松弛问题&#x

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值