最近在处理订单相关的问题,踩了数字的一些坑,在此记录下。
其中有问题的代码涉及金额比较,便于描述,假设了下面一段代码
def is_paid(pay_price, paid_price):
return pay_price == paid_price
# 数据表中的记录类似这样
# id pay_price ...
# 1 12.3
# ...
# 操作如下
# 这里使用了 SQLAlchemy 的 ORM 形式读取数据
order = Order.query.filter_by(id=1).first()
if is_paid(order.pay_price, 12.3):
print('paid')
else:
print('unpaid')
# 最后打印的却是 unpaid
跟踪代码才发现 order.pay_price 是 Decimal 类型,而 12.3 是浮点类型,Python 是强类型语言,类型不一样当然不等。
>>> from decimal import Decimal as d
>>> a = d('12.3')
>>> b = 12.3
>>> type(a)
>>> type(b)
>>> a
Decimal('12.3')
>>> b
12.3
>>> a == b
False
仔细想想,有点不对,你看 1 == 1.0 就成立啊,不也是不同类型(整型和浮点型)吗。
不管是不是强类型语言,数字之间作比较还是应该要能行的吧。
这里没有深挖,感觉就是 Python 设计的缘故吧。
所以,这里应该怎么作等值比较,试了下 math.isclose(a, b) ,嗯,行得通。
本应该在这里结束了,但,不小心玩了下
>>> m = 0.1 + 0.2
>>> n = 0.3
>>> m == n
False
纳尼
然后打印了下值
>>> m
0.30000000000000004
>>> n
0.3
我还有什么话可说呢,这下让我对 Python 浮点数的处理产生了怀疑。
也让自己对以前所写的数字比较产生了怀疑,天哪,全是 Bug 。不过后面想通了,不存在的 :)
>>> x = 1.0
>>> y = Decimal('2')
>>> x + y
Traceback (most recent call last):
File "", line 1, in
TypeError: unsupported operand type(s) for +: 'float' and 'decimal.Decimal'
这下,搞得我以后都不知道怎么处理数字了。程序中很多地方都没判断类型,呀,又是一堆隐患。(同样,还是想多了...)
为了理清自己的思路,又试了下
>>> z = 3
>>> y + 3
Decimal('5')
原来,Decimal 和整型是能进行算术运算的。
后面自己冷静了下,终于想通了。
程序中,我们用的很多库,涉及小数的基本上都是用的 Decimal 类型,比如 SQLAchemy ORM 取出来的小数数据都是此类型。
Decimal 之间比较一般精度的数字都是没问题的,并且程序中我们定义数字的初始值基本都是整型 0 ,和 Deciamal 运算没有问题,所以上面的疑虑都烟消云散了。
所以,在以后的数字处理中,自己尽量只使用整型和 Decimal 类型,来避免上面的隐形问题。
不过,要注意
>>> t1 = Decimal(0.123)
>>> t2 = Deciaml('0.123')
>>> t1 == t2
False
这是由于浮点数 0.123 在转为 Decimal 的时候失去了精度
>>> t1
Decimal('0.1229999999999999982236431605997495353221893310546875')
>>> t2
Decimal('0.123')
因此,定义 Decimal 类型的时候,我们尽量使用字符串来避免这个问题。
本文首发于公众号「小小后端」,关注并回复「1024」有惊喜哦。