一、决策树
定下一个最初的质点,从该点出发、分叉。(由于最初质点有可能落在边界值上,此时有可能会出现过拟合的问题。
二、SVM
svm是除深度学习在深度学习出现之前最好的分类算法了。它的特征如下:
(1)它既可应用于线性(回归问题)分类,也可应用于非线性分类;
(2)通过调节核函数参数的设置,可将数据集映射到多维平面上,对其细粒度化,从而使它的特征从二维变成多维,将在二维上线性不可分的问题转化为在多维上线性可 分的问题,最后再寻找一个最优切割平面(相当于在决策数基础上再寻找一个最优解),因此svm的分类效果是优于大多数的机器学习分类方法的。
(3)通过其它参数的设置,svm还可以防止过拟合的问题。
推荐学习博客(哒哒师兄大大地推荐的喔~):支持向量机通俗导论(理解SVM的三层境界)
三、随机森林
为了防止过拟合的问题,随机森林相当于多颗决策树。
四、knn最近邻
由于knn在每次寻找下一个离它最近的点时,都要将余下所有的点遍历一遍,因此其算法代价十分高。
五、朴素贝叶斯
要推事件A发生的概率下B发生的概率(其中事件A、B均可分解成多个事件),就可以通过求事件B发生的概率下事件A发生的概率,再通过贝叶斯定理计算即可算出结果。
六、逻辑回归
(离散型变量,二分类问题,只有两个值0和1)
本文主要参考了scikit-learn的官方网站
1. 数据准备
关于分类,我们使用了Iris数据集,这个scikit-learn自带了.Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理。Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。数据集包含150个数据集,分为3类,每类50个数据,每个数据包含4个属性。可通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa,Versicolour,Virginica)三个种类中的哪一类。
注意,Iris数据集给出的三种花是按照顺序来的,前50个是第0类,51-100是第1类,101~150是第二类,如果我们分训练集和测试集的时候要把顺序打乱这里我们引入一个两类shuffle的函数,它接收两个参数,分别是x和y,然后把x,y绑在一起shuffle.
1 defshuffle_in_unison(a, b):2 assert len(a) ==len(b)3 importnumpy4 shuffled_a = numpy.empty(a.shape, dtype=a.dtype)5 shuffled_b = numpy.empty(b.shape, dtype=b.dtype)6 permutation =numpy.random.permutation(len(a))7 for old_index, new_index inenumerate(permutation):8 shuffled_a[new_index] =a[old_index]9 shuffled_b[new_index] =b[old_index]10 return shuffled_a, shuffled_b
下面我们导入Iris数据并打乱它,然后分为100个训练集和50个测试集
1 from sklearn.datasets importload_iris2
3 iris =load_iris()4 defload_data():5 iris.data, iris.target =shuffle_in_unison(iris.data, iris.target)6 x_train ,x_test = iris.data[:100],iris.data[100:]7 y_train, y_test = iris.target[:100].reshape(-1,1),iris.target[100:].reshape(-1,1)8 return x_train, y_train, x_test, y_test
2. 试验各种不同的方法
常用的分类方法一般有决策树, SVM, kNN, 朴素贝叶斯, 集成方法有随机森林,Adaboost和GBDT完整代码如下:
1 from sklearn.datasets importload_iris2
3 iris =load_iris()4
5 defshuffle_in_unison(a, b):6 assert len(a) ==len(b)7 importnumpy8 shuffled_a = numpy.empty(a.shape, dtype=a.dtype)9 shuffled_b = numpy.empty(b.shape, dtype=b.dtype)10 permutation =numpy.random.permutation(len(a))11 for old_index, new_index inenumerate(permutation):12 shuffled_a[new_index] =a[old_index]13 shuffled_b[new_index] =b[old_index]14 returnshuffled_a, shuffled_b15
16 defload_data():17 iris.data, iris.target =shuffle_in_unison(iris.data, iris.target)18 x_train ,x_test = iris.data[:100],iris.data[100:]19 y_train, y_test = iris.target[:100].reshape(-1,1),iris.target[100:].reshape(-1,1)20 returnx_train, y_train, x_test, y_test21
22
23 from sklearn importtree, svm, naive_bayes,neighbors24 from sklearn.ensemble importBaggingClassifier, AdaBoostClassifier, RandomForestClassifier, GradientBoostingClassifier25
26
27 x_train, y_train, x_test, y_test =load_data()28
29 clfs = {'svm': svm.SVC(),\30 'decision_tree':tree.DecisionTreeClassifier(),31 'naive_gaussian': naive_bayes.GaussianNB(), \32 'naive_mul':naive_bayes.MultinomialNB(),\33 'K_neighbor': neighbors.KNeighborsClassifier(),\34 'bagging_knn' : BaggingClassifier(neighbors.KNeighborsClassifier(), max_samples=0.5,max_features=0.5), \35 'bagging_tree': BaggingClassifier(tree.DecisionTreeClassifier(), max_samples=0.5,max_features=0.5),36 'random_forest' : RandomForestClassifier(n_estimators=50),\37 'adaboost':AdaBoostClassifier(n_estimators=50),\38 'gradient_boost' : GradientBoostingClassifier(n_estimators=50, learning_rate=1.0,max_depth=1, random_state=0)39 }40
41 deftry_different_method(clf):42 clf.fit(x_train,y_train.ravel())43 score =clf.score(x_test,y_test.ravel())44 print('the score is :', score)45
46 for clf_key inclfs.keys():47 print('the classifier is :',clf_key)48 clf =clfs[clf_key]49 try_different_method(clf)
给出的结果如下:
1 the classifier is: svm2 the score is : 0.94
3 the classifier is: decision_tree4 the score is : 0.88
5 the classifier is: naive_gaussian6 the score is : 0.96
7 the classifier is: naive_mul8 the score is : 0.8
9 the classifier is: K_neighbor10 the score is : 0.94
11 the classifier is: gradient_boost12 the score is : 0.88
13 the classifier is: adaboost14 the score is : 0.62
15 the classifier is: bagging_tree16 the score is : 0.94
17 the classifier is: bagging_knn18 the score is : 0.94
19 the classifier is: random_forest20 the score is : 0.92
前言:本教程主要使用了numpy的最最基本的功能,用于生成数据,matplotlib用于绘图,scikit-learn用于调用机器学习方法。如果你不熟悉他们(我也不熟悉),没关系,看看numpy和matplotlib最简单的教程就够了。我们这个教程的程序不超过50行
1. 数据准备
为了实验用,我自己写了一个二元函数,y=0.5*np.sin(x1)+ 0.5*np.cos(x2)+0.1*x1+3。其中x1的取值范围是0~50,x
1 deff(x1, x2):2 y = 0.5 * np.sin(x1) + 0.5 * np.cos(x2) + 0.1 * x1 + 3
3 returny4
5 defload_data():6 x1_train = np.linspace(0,50,500)7 x2_train = np.linspace(-10,10,500)8 data_train = np.array([[x1,x2,f(x1,x2) + (np.random.random(1)-0.5)] for x1,x2 inzip(x1_train, x2_train)])9 x1_test = np.linspace(0,50,100)+ 0.5 * np.random.random(100)10 x2_test = np.linspace(-10,10,100) + 0.02 * np.random.random(100)11 data_test = np.array([[x1,x2,f(x1,x2)] for x1,x2 inzip(x1_test, x2_test)])12 return data_train, data_test
其中训练集(y上加有-0.5~0.5的随机噪声)和测试集(没有噪声)的图像如下:
2. scikit-learn最简单的介绍。
scikit-learn非常简单,只需实例化一个算法对象,然后调用fit()函数就可以了,fit之后,就可以使用predict()函数来预测了,然后可以使用score()函数来评估预测值和真实值的差异,函数返回一个得分。例如调用决策树的方法如下:
1 In [6]: from sklearn.tree importDecisionTreeRegressor2
3 In [7]: clf =DecisionTreeRegressor()4
5 In [8]: clf.fit(x_train,y_train)6 Out[11]:7 DecisionTreeRegressor(criterion='mse', max_depth=None, max_features=None,8 max_leaf_nodes=None, min_samples_leaf=1, min_samples_split=2,9 min_weight_fraction_leaf=0.0, presort=False, random_state=None,10 splitter='best')11 In [15]: result =clf.predict(x_test)12
13 In [16]: clf.score(x_test,y_test)14 Out[16]: 0.96352052312508396
15
16 In [17]: result17 Out[17]:18 array([ 2.44996735, 2.79065744, 3.21866981, 3.20188779, 3.04219101,19 2.60239551, 3.35783805, 2.40556647, 3.12082094, 2.79870458,20 2.79049667, 3.62826131, 3.66788213, 4.07241195, 4.27444808,21 4.75036169, 4.3854911 , 4.52663074, 4.19299748, 4.42235821,22 4.48263415, 4.16192621, 4.40477767, 3.76067775, 4.35353213,23 4.6554961 , 4.99228199, 4.29504731, 4.55211437, 5.08229167,
接下来,我们可以根据预测值和真值来画出一个图像。画图的代码如下:
1 plt.figure()2 plt.plot(np.arange(len(result)), y_test,'go-',label='true value')3 plt.plot(np.arange(len(result)),result,'ro-',label='predict value')4 plt.title('score: %f'%score)5 plt.legend()6 plt.show()
然后图像会显示如下:
3. 开始试验各种不同的回归方法
为了加快测试, 这里写了一个函数,函数接收不同的回归类的对象,然后它就会画出图像,并且给出得分.函数基本如下:
1 deftry_different_method(clf):2 clf.fit(x_train,y_train)3 score =clf.score(x_test, y_test)4 result =clf.predict(x_test)5 plt.figure()6 plt.plot(np.arange(len(result)), y_test,'go-',label='true value')7 plt.plot(np.arange(len(result)),result,'ro-',label='predict value')8 plt.title('score: %f'%score)9 plt.legend()10 plt.show()
1 train, test =load_data()2 x_train, y_train = train[:,:2], train[:,2] #数据前两列是x1,x2 第三列是y,这里的y有随机噪声
3 x_test ,y_test = test[:,:2], test[:,2] #同上,不过这里的y没有噪声
3.1 常规回归方法
常规的回归方法有线性回归,决策树回归,SVM和k近邻(KNN)
3.1.1 线性回归
1 In [4]: from sklearn importlinear_model2
3 In [5]: linear_reg =linear_model.LinearRegression()4
5 In [6]: try_different_method(linar_reg)
3.1.2数回归
1 from sklearn importtree2 tree_reg =tree.DecisionTreeRegressor()3 try_different_method(tree_reg)
然后决策树回归的图像就会显示出来:
3.1.3 SVM回归
1 In [7]: from sklearn importsvm2
3 In [8]: svr =svm.SVR()4
5 In [9]: try_different_method(svr)
结果图像如下:
3.1.4 KNN
1 In [11]: from sklearn importneighbors2
3 In [12]: knn =neighbors.KNeighborsRegressor()4
5 In [13]: try_different_method(knn)
竟然KNN这个计算效能最差的算法效果最好
3.2 集成方法(随机森林,adaboost, GBRT)
3.2.1随机森林
1 In [14]: from sklearn importensemble2
3 In [16]: rf =ensemble.RandomForestRegressor(n_estimators=20)#这里使用20个决策树
4
5 In [17]: try_different_method(rf)
3.2.2 Adaboost
1 In [18]: ada = ensemble.AdaBoostRegressor(n_estimators=50)2
3 In [19]: try_different_method(ada)
图像如下:
3.2.3 GBRT
1 In [20]: gbrt = ensemble.GradientBoostingRegressor(n_estimators=100)2
3 In [21]: try_different_method(gbrt)
图像如下
4. scikit-learn还有很多其他的方法,可以参考用户手册自行试验.
5.完整代码
我这里在pycharm写的代码,但是在pycharm里面不显示图形,所以可以把代码复制到ipython中,使用%paste方法复制代码片.然后参照上面的各个方法导入算法,使用try_different_mothod()函数画图.完整代码如下:
1 importnumpy as np2 importmatplotlib.pyplot as plt3
4 deff(x1, x2):5 y = 0.5 * np.sin(x1) + 0.5 * np.cos(x2) + 3 + 0.1 *x16 returny7
8 defload_data():9 x1_train = np.linspace(0,50,500)10 x2_train = np.linspace(-10,10,500)11 data_train = np.array([[x1,x2,f(x1,x2) + (np.random.random(1)-0.5)] for x1,x2 inzip(x1_train, x2_train)])12 x1_test = np.linspace(0,50,100)+ 0.5 * np.random.random(100)13 x2_test = np.linspace(-10,10,100) + 0.02 * np.random.random(100)14 data_test = np.array([[x1,x2,f(x1,x2)] for x1,x2 inzip(x1_test, x2_test)])15 returndata_train, data_test16
17 train, test =load_data()18 x_train, y_train = train[:,:2], train[:,2] #数据前两列是x1,x2 第三列是y,这里的y有随机噪声
19 x_test ,y_test = test[:,:2], test[:,2] #同上,不过这里的y没有噪声
20
21 deftry_different_method(clf):22 clf.fit(x_train,y_train)23 score =clf.score(x_test, y_test)24 result =clf.predict(x_test)25 plt.figure()26 plt.plot(np.arange(len(result)), y_test,'go-',label='true value')27 plt.plot(np.arange(len(result)),result,'ro-',label='predict value')28 plt.title('score: %f'%score)29 plt.legend()30 plt.show()
参考资料:
http://blog.csdn.net/u010900574/article/details/52666291
http://blog.csdn.net/u010900574/article/details/52669072?locationNum=5