在组合了来自here和here的资源之后,我得到了以下代码。也许它会帮助你。其思想是,可以重写keras中的Callbacks类,然后使用on_batch_end方法检查keras将自动提供给该方法的logs中的损失值。
这是一个神经网络的工作代码,它内置了特定的函数。也许你可以从这里开始-import numpy as np
import pandas as pd
import seaborn as sns
import os
import matplotlib.pyplot as plt
import time
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
import keras
from keras.models import Sequential
from keras.layers import Dense
from keras.callbacks import Callback
# fix random seed for reproducibility
seed = 155
np.random.seed(seed)
# load pima indians dataset
# download directly from website
dataset = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data",
header=None).values
X_train, X_test, Y_train, Y_test = train_test_split(dataset[:,0:8], dataset[:,8], test_size=0.25, random_state=87)
class NBatchLogger(Callback):
def __init__(self,display=100):
'''
display: Number of batches to wait before outputting loss
'''
self.seen = 0
self.display = display
def on_batch_end(self,batch,logs={}):
self.seen += logs.get('size', 0)
if self.seen % self.display == 0:
print('\n{0}/{1} - Batch Loss: {2}'.format(self.seen,self.params['samples'],
logs.get('loss')))
out_batch = NBatchLogger(display=1000)
np.random.seed(seed)
my_first_nn = Sequential() # create model
my_first_nn.add(Dense(5, input_dim=8, activation='relu')) # hidden layer
my_first_nn.add(Dense(1, activation='sigmoid')) # output layer
my_first_nn.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
my_first_nn_fitted = my_first_nn.fit(X_train, Y_train, epochs=1000, verbose=0, batch_size=128,
callbacks=[out_batch], initial_epoch=0)
如果你想要这样的东西,请告诉我。