自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(171)
  • 收藏
  • 关注

原创 网页显示:嗯…无法访问此页面,的解决办法和原理

网页显示:嗯…无法访问此页面,的解决办法和原理

2025-06-05 17:35:39 577

原创 计算机科学概论 - - 【03】第一章:数据存储(二进制系统)

要想获得负值的模式,首先要规定一组适当长度的二进制1,接着按照二进制反响记数,直到前面只有一个1,后面都是0的模式形成。更确切的说,基数小数点右边第一位的量值是1/2(即2-1),下一位的量值是1/4(即2-2),再下一位是1/8(即2-3),以此类推。3. 图展示了正数和负数的加法,它展示了二进制补码记数法的一个主要优点:有符号数的任意组合的加法,都可以使用相同的算法来完成,因而可以使用相同的电路来实现。375这个表示中,5的位置与量值1相关,7的位置与量值10相关,3的位置与量值100相关联。

2024-12-18 18:11:28 609

原创 计算机科学概论 - - 【02】第一章:数据存储

需要组合一对值(运算的输入),得到第三个值(运算的输出)。XOR:当两个输入中的一个为真,另一个为假时,XOR输出为真,其余为假,即或者是a,或者是b,但不会是两个共存。有时也称为逻辑门,指一种设备,给定一种bool运算的输入值,门可以得到该bool运算的输出值。触发器是计算机存储器的基本单元,它是一个可以产生0或1输出的电路,它的值会一直保持不变,直到有另一个电路过来的脉冲使其变换成其他值。3. 计算机内,所有的信息是以0和1的模式编码的,这些数字称为位(binary digit,bit,二进制数字)。

2024-12-12 01:17:13 413

原创 计算机科学概论 - - 【01】绪论+章节介绍

在这个背景下, Tim提出了一个系统,这个系统可以通过因特网把计算机上存储的文档链接起来形成错综复杂的链接信息网,即万维网(World wide Web)。2. 机器(例如计算机)在执行任务之前,需要找到完成这项任务的算法,并用机器兼容的形式表示,即程序。例如:烹饪的算法即菜谱、使用洗衣机的算法即标注在洗衣机盖子内侧或贴在表面的标识。介绍传统用于计算机海量存储器中组织数据的方法,研究极其庞大的复杂数据库系统。如何发现算法、几种基本的算法结构、算法效率、正确性。软件工程处理的是开发大型软件系统时遇到的问题。

2024-12-12 00:09:12 324

原创 IP地址 与 DNS

• 定义:IPv4地址是用来标识网络中设备的32位地址,由四段0到255之间的数字组成,用“点”分隔开。• 通俗解释:IPv4地址就像是设备的“网络地址”,例如“192.168.1.1”,这让设备可以在网络中互相找到。• 举例:家里的路由器常用的默认IPv4地址是“192.168.1.1”,我们通过这个地址可以进入路由器的管理页面。

2024-11-12 11:42:00 1958

原创 Virtual Private Network 协议

这些协议各有特色,具体选择时可以根据需求和使用环境来定,比如:• 如果优先考虑连接速度,可选择PPTP或WireGuard;• 如果注重数据隐私和安全性,OpenVPN和L2TP/IPSec更适合;• 移动端用户在多变网络环境下,IKEv2/IPSec表现更稳定;• 在防火墙严格的网络下,SSTP会是不错的选择。

2024-11-12 11:30:55 991

原创 YCB数据集物体展示

08091011121314151617181921222425 -no rgb262728 no rgb293335363738404243444849 small50 medium51 large53545556575859617071abcd only rgbef only rgbghi only rgbj only rgbk only rgbabcdefg。

2024-05-10 15:53:29 768

原创 机器人抓取综述

的工作基础上,直接处理一个完整的场景点云或目标物体周围的局部区域,使用预训练的未知物体实例分割模型对物体进行分割,生成的抓地力的质量不依赖于精确掩模,端到端的实现复杂场景中对未知物体的抓取。:根据六自 由度目标位姿[1,2,3,4]或检测到的目标关键点[5,6]对这些 抓取点进行变换,从而规避了接触和抓取生成的物理推 理。基于学习的生成式抓取方法旨在克服几何启发 式的局限性,通常根据物理模拟器中的经验生成有意义 的6-DoF抓取【2个,基于无模型的抓取(基于数据驱动的抓取)

2024-04-28 21:26:26 1597

原创 相机标定——四个坐标系介绍

世界坐标系是一个用于描述和定位三维空间中物体位置的坐标系,通常反映真实世界下物体的位置和方向。在很多情况下,世界坐标系被认为是固定不变的,即它的原点和方向是相对固定的。世界坐标系的坐标值通常是绝对的,即它们与特定的测量单位和空间尺度相关联。在像素坐标系中,图像被分割成一个个小的图像单元,每个图像单元称为像素。像素坐标系的原点通常位于图像的左上角,水平方向通常为u。相机坐标系是相机内部的一个坐标系,用于描述相机传感器内的图像信息。图像坐标系是指相机传感器成像平面的二维坐标系,即图像上的像素位置的坐标系。

2024-04-07 01:53:04 2122 2

原创 基于视觉的机器人抓取——从物体定位、物体姿态估计到平行抓取器抓取估计——综述

本文对基于视觉的机器人抓取进行了全面的综述。我们总结了基于视觉的机器人抓取过程中的三个关键任务,即物体定位、物体姿态估计和抓取估计。详细地说,对象定位任务包括无分类的对象定位、对象检测和对象实例分割。此任务提供输入数据中目标对象的区域。物体姿态估计任务主要是对6D物体姿态进行估计,包括基于对应关系的方法、基于模板的方法和基于投票的方法,为已知物体提供抓取姿态的生成。抓握估计任务包括2D平面抓握方法和6DoF抓握方法,其中前者被约束为从一个方向抓握。这三种任务可以实现不同组合的机器人抓取。

2024-03-30 15:18:31 17194 4

原创 Instance Segmentation of Point Cloud Based on Improved DGCNN for Robotic Grasping<论文>

摘要点云分割是多目标叠加场景下机器人抓取研究的关键。针对点云分割方法在复杂叠加场景中精度低、鲁棒性差的问题,提出了一种基于动态图卷积神经网络的点云分割算法。在DGCNN特征提取中加入了一个将通道注意力机制和空间注意力机制相结合的通道空间注意力模块。这种改进的方法可以有效地利用点云的特征。为了训练改进的DGCNN网络,我们构建了一个包含800个真实世界堆叠场景的小型矩形对象分割数据集。实验结果表明,我们的分割准确率可以达到88.61%。经过充分的实验表明,采用我们的点云分割方法进行机器人抓取可以获得96%的成

2024-03-17 21:57:22 1257

原创 PointNet++GPD<论文>

首先,深度相机获取物体点云并将其输出到候选抓取姿态生成模块,候选抓取姿态产生模块输出可变量的抓取姿态,然后使用训练后的抓取质量评估模型来获得抓取姿态的类别。为了提高抓取检测模型生成抓取姿态的准确性和可靠性,本文提出了一种基于PointNet的端到端抓取姿态检测网络,并基于BigBIRD数据集[9]生成了700k个真实点云和抓取标签的数据集来训练模型,实验结果表明,该模型比测试集中的PointNetGPD和GPD具有更高的分类精度,在多目标密集环境中的抓取性能也优于这两种模型。另一个是抓取姿态质量评估模块。

2024-03-17 12:00:25 1457

原创 GPD<论文精简版>

1、二指手:双指手可以由两个接触面来模拟,这两个接触面沿着一维流形相互靠近和远离。因为只允许二指手,由于我们只允许使用两只手指的手,因此手相对于物体的 6-DOF 姿势足以计算出手指接触的位置,而手指接触的位置则是手相对于物体以给定姿势闭合时的位置。因此,只需给出 6-DOF 手部姿态,就能评估是否存在抓握动作。

2024-03-16 11:54:27 657

原创 win10蓝牙添加设备无法连接

选中“计算机”,单击鼠标右键,选择“管理”,选择“服务和应用程序”→“服务”把这三个服务启动:先选中一个服务,单击鼠标右键,选择“属性”,启动服务。

2024-03-16 10:54:08 1503

原创 GPG<论文>

Pinto and Gupta【14】采取相似的方法,只是训练数据来自(on-line experience obtained by the robot during an automated experience-gathering phase).Redmon and Angelova【15】使用上述手动标注的数据集,将抓取姿势问题视为a regression problem,用CNN去解决。在RGBD中以(x,y,cita)这种方式的缺点是:限制了机械手只能从一个特定的方向接近物体。

2024-03-15 19:57:19 603

原创 嵌入式系统的分层

驱动层,这部分比较难,驱动工程师不仅要能看懂电路图还要能对操作系统内核十分的精通,以便其所写的驱动程序在系统调用时,不会独占操作系统时间片,而导至其它任务不能动行,不懂操作系统内核架构和实时调度性,没有良好的驱动编写风格,按大多数书上所说添加的驱动的方式,很多人都能做到,但可能连个初级的驱动工程师的水平都达不到,这样所写的驱动在应用调用时就如同。方面的编程也是如此的。和汇编语言来编程的话,从嵌入式系统的硬件层走起来相对容易,硬件层也是驱动层的基础,一个优秀的驱动工程师是要能够看懂硬件的电路图和自行完成。

2024-03-15 17:21:55 459

原创 驱动层、接口层、应用层、上位机与下位机

2024-03-13 18:59:34 779

原创 Matlab工具箱实现相机标定

Matlab工具箱实现张正友相机标定_分别使用蔡氏与张正友标定法完成标定,并与matlab工具箱及(外参)实测结果对照。结-CSDN博客使用Matlab做相机标定(获取相机的内外参数矩阵)_matlab相机标定结束后如何显示图片的平移矩阵-CSDN博客 【一文弄懂】张正友标定法-完整学习笔记-从原理到实战-CSDN博客

2024-03-12 22:36:51 906

原创 强化学习——Grasping in the wild: Learning 6dof closed-loop grasping from low-cost demonstrations

我们的目标是在一个框架内实现可靠的 6DoF 闭环抓取,该框架要足够灵活,能够处理新型物体和带有移动物体的动态场景配置。我们发现,通过在一个大型人类演示数据集上训练视觉抓取值函数(使用基于视图的渲染进行数据增量)(通过配备腕部摄像头的手持式抓手收集),这一目标是可以实现的。将视觉导向抓取问题建模为马尔可夫决策过程(Markov Decision Process, MDP),其中在每个时刻 t,机器人根据策略 π(s, a) 选择并执行一个动作 a,然后转移到新的状态 s',并接收奖励 r。

2024-03-11 16:36:09 1124

原创 Using Simulation and Domain Adaptation to ImproveEfficiency of Deep Robotic Grasping

为训练现代机器学习算法而建立和收集有注释的视觉分析数据集,可能会非常耗时和昂贵。一个有吸引力的替代方法是使用现成的模拟器来渲染合成数据,并自动生成地面实况注释,但不幸的是,纯粹在模拟数据上训练的模型往往不能推广到真实世界。我们研究了如何将随机模拟环境和领域适应方法扩展到训练抓取系统,以便从原始单目 RGB 图像中抓取新物体。我们利用总共超过 25,000 个物理测试抓取对我们的方法进行了广泛评估,研究了一系列模拟条件和域适应方法,包括我们称之为 GraspGAN 的像素级域适应的新扩展。我们还表明,通过仅使

2024-03-11 16:23:17 976

原创 Deep Learning for Detecting Robotic Grasps

总体而言,该算法利用深度学习不仅学习抓取排序权重,还学习用于排序的特征,重点关注RGB-D数据,并使用了多模态正则化。

2024-03-11 12:04:39 656

原创 Antipodal robotic grasping using generative residual convolutional neural network

图2显示了所提议的GR-ConvNet模型,这是一个生成架构,接受n通道输入图像,并以三幅图像的形式生成像素级的抓取。与之前机器人抓取[1]、[2]、[3]、[4]的工作不同,在之前的工作中,通过从多个抓取概率中选择最佳的抓取,预测所需抓取为一个抓取矩形,我们的网络生成三幅图像,从中我们可以推断出多个物体的抓取矩形。我们提出了一个双模块系统来预测、计划和执行对跖点抓取。3)我们在公开的抓取数据集上评估了我们的模型,在Cornell和Jacquard抓取数据集上分别达到了最高水平的97.7%和94.6%。

2024-03-11 11:35:32 1186

原创 QT-Opt: Scalable Deep Reinforcement Learningfor Vision-Based Robotic Manipulation

最近的观察结果不断更新其抓取策略,以优化远距离抓取的成功率。除了获得极高的成功率,我们的方法还表现出了 除了获得极高的成功率外,我们的方法还表现出与更多标准抓取系统截然不同的行为:我们的方法仅使用来自肩上摄像头的基于 RGB 视觉的感知,就能自动 学习重新抓取策略,探测物体以找到最有效的抓取方式,学习 我们的方法会自动学习重新抓取策略、探测物体以找到最有效的抓取方式、学习重新定位物体并执行其他非抓取性预抓取操作、 并对干扰和扰动做出动态响应。

2024-03-11 11:14:31 606

原创 Contact-GraspNet: Efficient 6-DoF Grasp Generationin Cluttered Scenes

我们的方法与Murali等人的工作密切相关,他们的 目标是从场景的部分点云中为指定的目标物体生成无碰 撞的不同抓取,并使用预训练的未知物体实例分割模型 对物体进行分割[15,16]。Murali 等人[12]使用了一个多阶段过程,从分割的物体点云中合成目标物体的抓取点,周围没有任何上下文,然后使用另一个学习到的模型过滤掉碰撞的抓取点。因此,数据驱动抓取的大量工作将可能的抓取空间限制为平面抓取,其中抓取由每个像素周围的定向矩形表示,这些矩形定义了抓取框架 [7, 8, 9]。

2024-03-10 16:49:23 2169

原创 6-DOF GraspNet: Variational Grasp Generation for Object Manipulation

抓取姿势的成功取决于抓取相对于对象的相对姿 势。在这里,我们 专注于生成单个对象的抓取姿势,由于机械手的到达 和由于场景中的其他对象而产生的额外约束超出了本 工作的范围,可以通过轨迹优化技术来处理。相比之下,抓点检 测方法(GPD)[31,15]对候选抓点进行更密集的采样:对 观测到的点云中的一个点进行随机采样,并构建一个 与估计的表面法线和主曲率的局部方向对齐的达布框 架。这些方法中 的许多都依赖于物体的完整3D模型的可用性,这在现实 场景中是一个严重的限制,例如,机器人只能用嘈杂的 深度相机观察场景。

2024-03-10 11:09:01 2464

原创 机器人抓取 [ 题目/摘要 ] 更新中..

抓取以前未知的物体,一个没有3D模型的物体,是一个具有挑战性的问题。给定一个物体的两张(或更多)图像,我们的算法试图在每个图像中识别几个点,这些点对应于抓取物体的良好位置。这与标准的密集立体形成鲜明对比,后者试图对图像中的每个点进行三角测量(并且通常无法返回良好的 3D 模型)。我们用于从图像中识别抓取位置的算法是通过监督学习进行训练的,使用合成图像作为训练集。我们的算法成功地抓取了各种各样的物体,如盘子、胶带卷、水壶、手机、钥匙、螺丝刀、订书机、粗线圈、形状奇特的电源喇叭等,这些在训练集中都没有出现。

2024-02-04 21:45:45 1342

原创 机器人抓取中的混淆概念

具体地说,基于经验的方法可能会使用传统的机械抓取算法,但也可以通过使用机器学习技术来改进和优化这些算法。例如,在基于经验的方法中引入一些学习模块,这些模块可以从经验中学到的数据中提取有用的信息,并用于调整和改善抓取策略。这样的方法被称为“学习增强的基于规则的方法”。虽然端到端的方法通常使用神经网络或其他深度学习模型,但并不是所有基于经验的方法都不使用神经网络。实际上,一些传统的基于经验的方法可能会结合神经网络或其他机器学习技术,以更好地适应复杂的抓取任务。是否依赖先验知识和手工设计的特征(基于经验的方法)

2024-02-04 17:54:00 782

原创 Learning hand-eye coordinationfor robotic grasping with deep learning and large-scale data collecti

为了学习手眼协调 抓取,我们训练了一个大型卷积神经网络来预 测抓取器的任务空间运动成功抓取的概率,只 使用单目摄像机图像,独立于摄像机标定或当 前机器人姿态。为了训练我们的网络,我们 在两个月的时间里收集了超过 80 万次的抓取 尝试,在任何给定的时间使用 6 到 14 个机器人 操纵器,摄像机的位置和硬件都有所不同。通过不断地重新计算最有希望的 运动指令,我们的方法不断地整合来自环境的感官线索,使其 能够对扰动做出反应,并调整抓取,以最大限度地提高成功的 概率。本文中,我们提出了一种基于学习的。

2023-12-29 18:40:43 653

原创 Goal-Auxiliary Actor-Critic for 6D Robotic Grasping with Point Clouds

我 们证 明了 我们 学习 到 的策 略可 以集 成到 桌面 6 D 抓取 系统 和人 机切 换系 统中 ,以 提高 对看 不见 的物 体 的抓取性能。我 们 证明, 我们 在仿 真中 训练 的策 略可 以集 成到 桌面 6 D 抓取 系统 和人-机器 人切 换系 统中 ,以 提高 看 不见 的物 体 的抓 取 性能。对 于 未来 的工 作 ,我 们 计划 研究 由 于仿 真中 的 接触 建 模而 导致 的 策略 学 习中的模拟与真 实差 距,并 将该 方法扩 展到 混乱场 景中 的 6 D 抓取。

2023-12-29 18:08:09 485

原创 RoboNet

此外,通过少量数据的微调,这些模型可以泛化到未见过的夹爪和新的机器人平台,并且表现优于特定机器人和特定环境的训练。1、研究结论:本文的研究结论是通过构建RoboNet数据集和使用基于视觉预测和逆向模型的算法,可以实现多机器人、多领域的模型驱动强化学习,并且在零样本和少样本情况下能够实现对新对象、新视角和新机器人平台的泛化。通过构建大规模的数据集并进行实验评估,本研究在机器人学习领域迈出了重要的一步,实现了数据驱动的机器人学习方法的大规模应用,使得数据可以在不同机构之间共享,从而实现更高水平的泛化和性能。

2023-12-26 17:23:05 1022

原创 机械臂运动规划、抓取末端执行器、抓取开源项目

假设抓取点已检测到。这些方法设计了从机器人手到目标物体抓取点的路径。这里运动表示是关键问题。虽然存在从机器人手到目标抓握点的无限数量的轨迹,但是由于机器人臂的限制,许多区域无法到达。因此,需要对轨迹进行规划。主要有三种方法,如传统的基于DMP的方法、模仿学习的方法和基于强化学习的方法。一般而言,检测到抓取点后,运动规划常用ROS MoveIt组件实现。

2023-12-02 17:01:47 1327

原创 抓取检测(Grasp Dection)

抓取检测被定义为能够识别任何给定图像中物体的抓取点或抓取姿势。抓取策略应确保对新物体的稳定性、任务兼容性和适应性,抓取质量可通过物体上接触点的位置和手的配置来测量。为了掌握一个新的对象,完成以下任务,有分析方法和经验方法。分析方法根据抓取稳定性或任务要求的运动学和动力学公式,选择手指位置和手部构型,经验方法根据具体任务和目标物体的几何结构,使用学习算法选择抓取。根据是否需要进行目标定位,需要确定目标的姿态,进一步将其分为三类:具有已知定位和姿势的方法、具有已知定位和无姿态的方法、无定位和无姿态的方法。

2023-12-02 16:13:47 2001

原创 Robot Grasp[Code with paper]

题目/摘要重点。

2023-12-02 12:11:11 1519

原创 [2]相机标定、与机器人手眼标定

1.2.3.1.2.3.抓取实验平台硬件包含:深度相机、计算机、机械臂、置物台标定过程涉及四个坐标系:世界坐标系、图像像素坐标系、图像物理坐标系、相机坐标系。相机的16个参数:6个相机外参(相机在世界坐标系下的位置):3个平移参数T、3个旋转参数R。

2023-11-28 12:13:46 936

原创 [1] AR Tag 在ros中的使用

AR Tag 是一种用于增强现实(AR)应用中的视觉标记,用于跟踪和定位虚拟物体在现实世界中的位置。AR Tag由黑白正方形图像表示,图像内部有黑色边框中的某些图案。它与我们经常用到的二维码长得类似,原理其实也一样,但其编码系统和二维码有很大的区别。AR Tag 要用于做位姿识别,即通过相机图像识别 AR Tag 的位置和姿态,从而实现对AR标记物的定位。与二维码相比,AR Tag 的图案相对简单,仅包含黑白色块以及一些辅助图形,编码信息相对较少,因此其图案识别度更高。

2023-11-28 11:49:38 460

原创 [ERROR] : “ar_marker_6“ passed to lookupTransform argument target_frame does not exist

节点应该会接收来自OpenNI2相机的彩色图像和相机信息,以及输出到指定坐标系帧的标记信息。这个坐标系帧通常是相机的坐标系,或者是相机链接的坐标系。如果你的应用中确实使用了这个坐标系帧,你需要确保它正确地被发布。是正确的坐标系帧名称,并且确保这个坐标系帧在你的ROS环境中存在。的启动文件以正确指定相机图像和相机信息的ROS话题,以及输出的坐标系帧名可能有助于解决。这将生成一个PDF文件,其中包含ROS中存在的所有坐标系帧的关系。相关的参数,确保它们与你实际使用的标记的名称和坐标系帧名称一致。

2023-11-27 12:45:23 577

原创 Xtion深度相机驱动安装+相机标定

标定的结果到什么程度算是合格,最好的情况是【X】、【Y】、【Size】、【Skew】下面的线条变为绿色后就成功了。当认为当前标定图像的数目已经够了,(六七十张就差不多了,太多容易卡死),点击。标定结束后,标定结果存在【/tmp/calibrationdata.tar.gz】,可以移动出来看看内容。里面存放的是标定的图片和求得参数的txt文件和yaml文件。如果对标定结果满意,点击Save将结果保存到默认文件夹,点击COMMIT,数据会自动导入下次启动相机驱动节点时,会自动调用保存的.yaml。

2023-11-16 15:48:22 598

原创 Ubuntu18.04安装ROS系统+turtle测试

Ubuntu18.04安装ROS系统

2023-11-16 13:30:30 358

原创 ycb数据集筛选

tain数据集:03.04.05.06.07.08.09.10.11.131415peach桃子:1617orange橘子:18plum李子:212426sponge:293335374852。

2023-10-10 13:07:31 522 2

原创 机器人抓取检测技术的研究现状

使用学习的方法检测抓取可分为两大类,如图6 所示:一是基于抓取检测的抓取方法(需要一个单独 抓取规划控制系统),通过抓取检测方法生成抓取位 姿,再使用单独的规划控制系统基于轨迹规划生成轨 迹,实现完整的抓取;首先,基于环境限制和机械手与物体模 型进行抓取检测,抓取检测是指找到满足与抓取任 务相关的一组候选抓取位姿的过程;在在线阶段,将场景进行分割,识别出物体,找 到物体模型数据库中的物体与之对应,然后进行物体 姿态估计,根据位姿检索找到抓取经验数据库中的抓 取位姿,最后进行抓取选择和可达性过滤,执行抓取.

2023-09-10 16:08:34 1759

ubuntu18.04安装ROS

ros安装

2023-03-17

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除