python生成图像分割color图_使用 Python 通过基于颜色的图像分割进行物体检测

本文介绍了使用Python和OpenCV进行基于颜色的图像分割,以实现物体检测。通过将图像分为不同灰度级,计算每个级别的面积,从而识别图像中的特定对象。在案例中,展示了如何将图像转换为HSV颜色空间,统一颜色并找到最大轮廓,以检测图像中的叶子。这种方法对于处理具有复杂纹理和不均匀颜色的对象非常有用。
摘要由CSDN通过智能技术生成

本文为 AI 研习社编译的技术博客,原标题 :

Object detection via color-based image segmentation using python

作者 |Salma Ghoneim

翻译 | Mr丶Lonely

校对 | 酱番梨 审核 | 约翰逊·李加薪 整理 | 立鱼王

原文链接:

https://towardsdatascience.com/object-detection-via-color-based-image-segmentation-using-python-e9b7c72f0e11图片来自pexels

入门

如果你已经安装了jupyter notebook或者一个IDE,你可以运行python然后下载OpenCV,只需要跳到执行即可。

工具

我们今天的英雄是Anaconda。一个免费开源的发行版,帮助我们下载不同的软件包并且将它们整理到独立的环境之中。

维基百科告诉我们关于Anaconda的内容:

Anaconda是用于科学计算(数据科学,机器学习应用程序,大规模数据处理,预测分析等)的Python和R编程语言的免费开源发行版,旨在简化包管理和部署。包版本由包管理系统conda管理。Anaconda发行版已被超过1200万用户使用,包括1400多种适用于Windows,Linux和MacOS的流行数据科学包。

创建环境

打开bash(cmd)并输入

$ conda create -n myEnv python=3

提示下载软件包时选择y(表示是)。

这将在浏览器中为您打开jupyter notebook。

$ source activate myEnv

$ conda install anaconda

$ conda activate myEnv

$ conda install opencv

$ jupyter notebook

一些重要的术语

轮廓

轮廓可以简单地解释为连接所有连续点(连同边界)的曲线,具有相同的颜色或亮度。轮廓是形状分析和目标检测和识别的有用工具。

阈值

在灰度图像上应用阈值处理使其成为二值图像。你可以设置一个阈值,其中低于此阈值的所有值都将变为黑色,高于此阈值的所有值都将变为白色。

执行

现在你已经有了所有你需要的东西。

我们将从一个简单的例子开始,向你展示基于颜色的分割是如何工作的。

忍受我一下,直到我们得到好的东西.一个Ombre圈 - 使用photoshop制作的图像

如果你想和我一起尝试,你可以从原文免费获得这个图像。

在下面的代码中,我将把这个图像分成17个灰度级。然后使用轮廓测量每个级别的区域。

import cv2

import numpy as np

def viewImag

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值