realme x2 深度测试打不开_从零开始配置个人深度学习小站

本文记录了一位作者如何在疫情期间使用8000元左右的预算,组装一台用于深度学习的主机。详细介绍了从硬件选择、装机过程到系统安装、显卡驱动、CUDA Toolkit、cuDNN的安装,以及如何配置Python环境和安装PyTorch、PyCharm IDE。最后,进行了PyTorch和CUDA的测试验证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

硬件配置及安装
相关软件安装

背景

2020年疫情让我们在家中,这让我开始为自己动手配置一台深度学习主机。因为并没有什么钱,但是对性能还是有一定要求的,最终选择了8000元左右的装机配置。

硬件配置

所有硬件和价格计算以京东价参考并附上了相关链接

时间:2020年初

所有硬件总价格:¥8845.1

不算键盘、鼠标、显示器价格:¥7983.3

主板:技嘉(GIGABYTE)B365 M AORUS ELITE ¥698

CPU:英特尔(Intel)i5 9400F 酷睿六核 盒装CPU处理器 ¥1199

显卡:技嘉(GIGABYTE)GeForce RTX 2070 SUPER GAMING OC 3X 8G 256bit ¥4199.8

内存:金士顿(Kingston) DDR4 2666 8GB 台式机内存条 骇客神条 x2 ¥289 x2 = ¥578

固态硬盘:金士顿(Kingston) 240GB SSD固态硬盘 SATA3.0接口 A400系列 ¥289

机械硬盘:Seagate/希捷 电脑机械硬盘台式机 1T ¥299

电源:安钛克(Antec)VP650铜牌 台式机电脑主机机箱电源铜牌650W ¥459.8

机箱:爱国者(aigo)YOGO M2钛灰色 游戏药丸MINI电脑机箱 ¥189

机箱风扇:先马(SAMA)游戏风暴 12CM无光 机箱风扇 x2 ¥15.9 x2 = ¥31.8

CPU风扇:九州风神(DEEPCOOL) 玄冰300CPU散热器 ¥39.9

键盘:罗技(Logitech)K120键盘有线键盘 ¥49.9

鼠标:戴尔(DELL)MS116 有线鼠标商务办公 ¥22.9

显示器:飞利浦 三代 23.6英寸 ¥789

硬件装机

跟着视频装机是最方便的

硬件茶谈在 bilibili 里的这个视频【装机教程】这可能是你能在网上找到最详细的装机教程 ,对电脑组装讲的非常好,建议装机前看一遍,装的时候也可以跟着走

另外,我因为买的是 CPU 盒装,暂时没买单独 CPU 风扇,Intel CPU 自带风扇安装,请看这里 从零开始学装机 教你如何安装CPU风扇

系统安装

Windows 10 系统安装,和上面一样推荐硬件茶谈在 bilibili 的视频 超详细WIN10系统安装教程

这里我不建议用PE,直接系统安装就好了,并不麻烦,而且我心里感觉这样安装一直比PE好一些的

显卡驱动安装/更新

因为 Win10 一般会自动为我们安装一个驱动,所以这里我们一般更新一下

英伟达驱动程序

笔记本需要选 notebooks,其他的按照自己的显卡型号

CUDA Toolkit 安装

CUDA(Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台。 CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题(百度百科)。

简单来说 CUDA 是帮助我们的深度学习程序访问和利用 GPU 计算的一个框架

在这里下载 CUDA Toolkit

cuDNN 安装

cuDNN 是 CUDA toolkit 中对于深度神经网络的另外一个库,但是我们需要手动把他们加入 CUDA 中

在这里注册、并下载 NVIDIA cuDNN

下载解压后,将 bin, include, lib 中的文件收到拷贝到前面安装 cuda toolkit 的对应文件夹中

创建 Python 环境

安装 Anaconda Downloads - Anaconda

创建环境 conda create -n pytorch pip python=3.7

安装 PyTorch

进入刚刚创建的 conda 环境 conda activate pytorch

安装 PyTorch conda install pytorch torchvision cudatoolkit=10.1 -c pytorch

安装 PyCharm IDE

下载 PyCharm Community

新建 project,配置 existing environmnet 为刚刚创建的 conda 环境 ,路径大致为 Anaconda3envpytorchpython.exe(这里需要找到,anaconda的目录,然后找env,最后找到刚刚装机的环境名字为pytorch里的 python 作为解释器)

测试 pytorch 和 cuda

任意进入 python 环境

# 测试 pytorch
import torch
x = torch.rand(5,3)
print(x)           # 有一个5x3 的矩阵输出

# 测试cuda
torch.cuda.is_available()  # 期待结果为 True

参考

windows10下安装GPU版pytorch简明教程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值