一、Smith圆图理论综述在微波工程中,常采用Smith圆图来分析传输线问题。传输线能引导电磁波沿一定的方向传输,为了提高传输线传输能量的效率,将输入的能量尽最大可能传给终端负载,需要保证传输线的终端的负载与其特性阻抗匹配,即传输线此时处于阻抗匹配状态。阻抗匹配的方法有很多种,它们大致上可以归纳为:手工计算(极其繁琐)、经验(只适合于微波通信领域的资深专家)和Smith圆图(简单、方便、直观)。Smith圆图是把特征参数和工作参数形成一体,采用图解法解决的一种专用图表。早在计算机时代之前的1939年就被P.H.Smith在贝尔实验室所开发。Smith圆图在计算微波传输线输入阻抗、导纳、及阻抗匹配等问题时,不仅能避开繁琐的公式及复数运算,使工程设计中相关计算简单便捷,而且图解过程物理概念清晰,所得结果直观形象。直到现在,它的图形仍然被广泛地应用在分析、设计和解决传输线的所有问题上[1,2]。但随着计算机技术的飞速发展,图解法在计算精度上的固有缺陷日益显现,因为,圆图的设计精度取决于圆图中必须有足够的圆周数,而过多的圆周会导致3本文获得同济大学电子与信息工程学院“教学课程项目与工程实践项目建设”的资助图线过于密集,不便将阻抗、反射系数、电压驻波系数(VSWR)及电长度等相关数据从图上直接读出。通过对圆图构成的基本原理和应用问题的分析,我们利用现代计算机技术可以解决图解法计算精度等问题。更多的计算机仿真软件是为不同功能设计的,而不只是用于阻抗匹配,所以使用起来比较复杂。为适合教学,本文将论述通过Matlab模块化逐步解决Smith圆图问题的的过程,实现一种“微波工程Smith圆图的教学辅助软件系统”,以加强课程教学中理论性和工程性的结合,加强学生的工程实践环节。二、Smith圆图构成原理Smith圆图是基于电压反射系数的极坐标图。001(z')|(z')|e1LjLVzVz?.(1)其中,?代表线路的反射系数,Lz是归一化负载值,即LZ与0Z的比值。其中LZ是线路本身的负载值,0Z是传输线的特征阻抗值,通常取50?。反射系数??)(z?是个复数,其模值??)(z?反映反射点波的反射程度,其辐角是反射点反射电压zU)(???与入射电压zU)(???间的相位差。由公式(1)得到:)2(121212)()()()(?zjjzjjzjezeUeUzUzUz?(2)式中,12UU?????;1?和2?分别为入射波电压1U?和反射波电压2U?的初相角。令z?=0,得负载处的反射系数为:)(21?jLLe??(3)式(3)和式(2)相比得如下的关系,即zjLez?2?)(??(4)式(4)表明,均匀无耗传输线上的反射系数的幅值不变,由负载处反射系数的模L??决定,而相角以2?为周期随zje?2??变化。由于????10L,所以可以把均匀传输线上的各种工作状态,用复平面上单位圆内的一簇同心圆表示出来,即为反射系数圆图。反射系数圆的半径L??,表示在相应状态下线上各点反射系数的大小。根据L??与驻波比?和行波系数K的关系,即LL?11?,?1K?。在反射系数圆上?也可以对应?和K的标度。反射系数的相角为)(4)4(4420?zlzzzLLL?(5)式中,??40Ll?;?zll???0称为电长度,于是)4tan(lab????(6)其中,a?和b?分别是反射系数的实部和虚部。显然,?为常数的轨迹,在反射系数圆上,是一簇通过坐标圆点的射线。?的数值由L?和z?共同确定,当z?增大时,相角沿顺时针向电源方向旋转,z?变化周期为半个波长。在Smith圆图外的刻度圆上的标度?,
无耗传输线 matlab,基于Matlab模块化的微波工程Smith圆图辅助教学方法
最新推荐文章于 2024-05-15 22:59:59 发布