python计算2的n次方_快速幂算法 及其Python实现

题干

本题来自LeetCode Problem 50。其大意为给定 x (浮点数)和 n (整数),求 x 的 n 次幂。

解法

暴力解法

暴力解法……当然是直接拿 x 乘 n 次咯,注意如果 n 取负数的时候,要先对 x 求倒数,再乘以 -n 次。

class Solution:

def myPow(self, x: float, n: int) -> float:

if n == 0:

return 1

if n < 0:

return myPow(1 / x, -n)

ans = 1

for i in range(n):

ans *= x

return ans

但是很显然当 n 的绝对值很大的时候会有很恐怖的时间消耗,而且不必要。

快速幂算法

递归实现

由小学数学我们很容易得知,myPow(x, 2n) = myPow(x, n) * myPow(x, n),因此我们对给定 n,只需计算其 n / 2 次幂,再将其相乘即可,注意如果 n 是奇数的话,例如 n = 5 时,先计算n // 2 = 2,向下取整,之后再计算myPow(x, 5) = myPow(x, 2) * myPow(x, 2) * x。这样就很容易地把时间复杂度降到了O(log n)级别。话不多说上代码:

class Solution:

def myPow(self, x: float, n: int) -> float:

if n == 1:

return x

if n == 0:

return 1

if n < 0:

return self.myPow(1/x, -n)

return self.myPow(x, n // 2) ** 2 if n % 2 == 0 else self.myPow(x, n // 2) ** 2 * x

迭代实现

LeetCode 官方还给出了一种快速幂的迭代实现,将空间复杂度从O(log n) 降到了 O(1),思想也非常巧妙,供大家参考:

class Solution:

def myPow(self, x: float, n: int) -> float:

def quickMul(N):

ans = 1.0

# 贡献的初始值为 x

x_contribute = x

# 在对 N 进行二进制拆分的同时计算答案

while N > 0:

if N % 2 == 1:

# 如果 N 二进制表示的最低位为 1,那么需要计入贡献

ans *= x_contribute

# 将贡献不断地平方

x_contribute *= x_contribute

# 舍弃 N 二进制表示的最低位,这样我们每次只要判断最低位即可

N //= 2

return ans

return quickMul(n) if n >= 0 else 1.0 / quickMul(-n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值