python cnn模型_字符级CNN分类模型的实现

项目环境:

Python3.6

Anaconda+Pipenv管理

使用

# 下载代码

git clone https://github.com/howie6879/char_cnn_text_classification.git

# 利用anaconda建立Python3.6环境

conda create -n python36 python=3.6

# 进入项目

cd char_cnn_text_classification

# --python 后面的路径是上面conda创建的路径地址

pipenv install --python ~/anaconda3/envs/python36/bin/python3.6

# 如果出错 否则跳过这段

pipenv run pip install pip==18.0

# 安装依赖 具体以来可查看Pipenv文件

pipenv install

# 进入代码目录

cd char_cnn_text_classification

模型

模型结构和论文中介绍的一样:

论文中设计了 large 和 small 两种卷积网络,分别对应不同大小的数据集,且都由6个卷积层和3个全连接层共9层神经网络组成

对于英文数据,如果数据集不大,可以考虑使用包含大小写的字母表

数据集

ag_news_csv:新闻数据

对于英文数据,包含在 [ag_news_csv] (char_cnn_text_classification/datasets/ag_news_csv)文件夹里面,信息如下:

训练集:120000

测试集:7600

类别:4

数据集处理类 [DataUtils] (char_cnn_text_classification/utils/data_utils.py),这里以训练集 shape 为例:

Input实例:(120000, 1014)

Label:(120000, 4)

配置

关于配置,请参考 [Config] (char_cnn_text_classification/config/config.py)类:

# 字母表

alphabet = "abcdefghijklmnopqrstuvwxyz0123456789-,;.!?:'\"/\\|_@#$%^&*~`+-=<>()[]{}"

alphabet_size = len(alphabet)

# 输入大小,即论文中的l0

input_size = 1014

# 训练集类别

num_of_classes = 4

batch_size = 128

epochs = 1000

checkpoint_every = 100

evaluate_every = 100

# 激活函数的 threshold 值

threshold = 1e-6

# 防止过拟合 dropout保留比例

dropout_p = 0.5

# 损失函数

loss = 'categorical_crossentropy'

# 优化器 rmsprop adam

optimizer = 'adam'

训练

配置好环境之后,可以直接进行训练:

python run_model.py

可以在测试集分出20000条作为验证集进行训练

Data loaded from datasets/ag_news_csv/train.csv

CharCNN model built success:

......

Training Started ===>

Train on 100000 samples, validate on 20000 samples

Epoch 1/10

......

100000/100000 [==============================] - 4338s 43ms/step - loss: 0.9999 - acc: 0.5329 - val_loss: 0.6755 - val_acc: 0.7290

Epoch 2/10

......

100000/100000 [==============================] - 4265s 43ms/step - loss: 0.5044 - acc: 0.8204 - val_loss: 0.4582 - val_acc: 0.8405

Epoch 3/10

......

100000/100000 [==============================] - 4268s 43ms/step - loss: 0.3593 - acc: 0.8799 - val_loss: 0.4177 - val_acc: 0.8522

......

迭代了三轮,就达到了论文中所说的效果 0.8522

准确率和误差图示:

可以看到,迭代6、7轮后的结果挺不错,也可以利用 Tensorboard 进行可视化:

tensorboard --logdir=char_cnn_text_classification/logs

测试

char_cnn_model.model.evaluate(test_inputs, test_labels, batch_size=Config.batch_size, verbose=1)

可以得到结果输出:

128/7600 [..............................] - ETA: 1:51

......

7600/7600 [==============================] - 110s 15ms/step

[0.41680785787732977, 0.8789473684210526]

其中:

loss: 0.41

acc: 0.8789

说明

感谢论文作者 Xiang Zhang, Junbo Zhao, Yann LeCun ,以及下面这些开源项目:

本文由howie6879 创作,采用 知识共享署名4.0 国际许可协议进行许可,转载请注明出处!

刷新可加载文末评论

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Python是一种很流行的编程语言,CNN(卷积神经网络)是一种强大的深度学习模型,在文字识别方面表现出色。 Python提供了丰富的机器学习和深度学习框架,如TensorFlow和Keras,可以用于实现CNN模型CNN模型由卷积层、池化层和全连接层构成。在文字识别任务中,我们可以将文字图片作为模型的输入,经过卷积操作提取关键特征,然后通过池化层进行下采样,最后通过全连接层进行分类。 文字识别可以应用于多个领域,如自动化文字识别、光学字符识别和手写字符识别。在自动化文字识别中,我们可以利用CNN模型对大量文档进行快速处理,提高工作效率。在光学字符识别中,通过CNN模型可以将印刷体文字转化为可编辑的电子文本,方便后续使用。在手写字符识别中,CNN模型可以识别各种字母和数字的手写形式,可以应用于签名验证、识别手写邮件地址等场景。 为了实现文字识别,我们需要训练CNN模型。首先,我们需要准备一个包含大量文字图片的数据集,并对图片进行预处理,如图像归一化和标准化。然后,我们利用训练集对CNN模型进行训练,通过反向传播算法更新模型参数。最后,我们使用测试集对已训练好的模型进行评估,评估指标可以是准确率、召回率等。 总而言之,PythonCNN模型在文字识别中具有广泛的应用前景。通过使用Python提供的机器学习和深度学习框架,我们可以构建并训练出高效准确的文字识别模型,从而提高识别效率和准确性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值