Compare a normal raised cosine filter with a square-root cosine filter. An ideal (infinite-length) normal raised cosine pulse-shaping filter is equivalent to two ideal square-root raised cosine filters in cascade. Thus, the impulse response of an FIR normal filter should resemble that of a square-root filter convolved with itself.
Create a normal raised cosine filter with rolloff 0.25. Specify that this filter span 4 symbols with 3 samples per symbol.
rf = 0.25;
span = 4;
sps = 3;
h1 = rcosdesign(rf,span,sps,'normal');
fvtool(h1,'impulse')
The normal filter has zero crossings at integer multiples of sps. It thus satisfies Nyquist's criterion for zero intersymbol interference. The square-root filter, however, does not:
h2 = rcosdesign(rf,span,sps,'sqrt');
fvtool(h2,'impulse')
Convolve the square-root filter with itself. Truncate the impulse response outward from the maximum so it has the same length as h1. Normalize the response using the maximum. Then, compare the convolved square-root filter to the normal filter.
h3 = conv(h2,h2);
p2 = ceil(length(h3)/2);
m2 = ceil(p2-length(h1)/2);
M2 = floor(p2+length(h1)/2);
ct = h3(m2:M2);
stem([h1/max(abs(h1));ct/max(abs(ct))]','filled')
xlabel('Samples')
ylabel('Normalized amplitude')
legend('h1','h2 * h2')
The convolved response does not coincide with the normal filter because of its finite length. Increase span to obtain closer agreement between the responses and better compliance with the Nyquist criterion.