基带 rised cos matlab,Raised cosine FIR pulse-shaping filter design

Compare a normal raised cosine filter with a square-root cosine filter. An ideal (infinite-length) normal raised cosine pulse-shaping filter is equivalent to two ideal square-root raised cosine filters in cascade. Thus, the impulse response of an FIR normal filter should resemble that of a square-root filter convolved with itself.

Create a normal raised cosine filter with rolloff 0.25. Specify that this filter span 4 symbols with 3 samples per symbol.

rf = 0.25;

span = 4;

sps = 3;

h1 = rcosdesign(rf,span,sps,'normal');

fvtool(h1,'impulse')

1ad771df8610856861e1784882f241c3.png

The normal filter has zero crossings at integer multiples of sps. It thus satisfies Nyquist's criterion for zero intersymbol interference. The square-root filter, however, does not:

h2 = rcosdesign(rf,span,sps,'sqrt');

fvtool(h2,'impulse')

8e95ea9a836857e81212f47268dc88eb.png

Convolve the square-root filter with itself. Truncate the impulse response outward from the maximum so it has the same length as h1. Normalize the response using the maximum. Then, compare the convolved square-root filter to the normal filter.

h3 = conv(h2,h2);

p2 = ceil(length(h3)/2);

m2 = ceil(p2-length(h1)/2);

M2 = floor(p2+length(h1)/2);

ct = h3(m2:M2);

stem([h1/max(abs(h1));ct/max(abs(ct))]','filled')

xlabel('Samples')

ylabel('Normalized amplitude')

legend('h1','h2 * h2')

0b54db90823ca1c8394ebb31594569ad.png

The convolved response does not coincide with the normal filter because of its finite length. Increase span to obtain closer agreement between the responses and better compliance with the Nyquist criterion.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值