xwmisc
码龄7年
关注
提问 私信
  • 博客:60,570
    动态:45
    60,615
    总访问量
  • 17
    原创
  • 1,245,688
    排名
  • 19
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2017-08-24
博客简介:

xwmisc的博客

查看详细资料
个人成就
  • 获得82次点赞
  • 内容获得47次评论
  • 获得288次收藏
  • 代码片获得510次分享
创作历程
  • 6篇
    2023年
  • 5篇
    2022年
  • 1篇
    2021年
  • 5篇
    2020年
成就勋章
TA的专栏
  • 笔记
    12篇
  • 杂谈
    3篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

from numexpr.interpreter import ... ImportError: DLL load failed:找不到指定的模块

启动langchain工程的时候报错`from numexpr import MAX_THREADS, use_vml, __ BLOCK_SIZE1__ ImportError:DLL load failed:找不到指定的模块`,经检查,我的版本为Python3.10,依赖库没问题。
原创
发布博客 2023.07.05 ·
697 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

【Word小技巧】不选择段落换行符、修改默认粘贴格式

编辑Word的时候,想框选一行文字作修改替换,却总是框选中换行符。那在Word中不想选中换行符怎么办?本文介绍了两个小技巧,解决在Word编辑时框选换行符和粘贴格式不符合要求的问题。通过设置选项,可以默认不选中换行符和修改默认粘贴格式,提高编辑效率。
原创
发布博客 2023.06.02 ·
1739 阅读 ·
2 点赞 ·
1 评论 ·
2 收藏

【AI画画教程】无整合包使用LoRA和Dreambooth训练全流程详解(Linux)

目前很多AI画画训练整合包臃肿复杂,教程也是名词乱炖,容易对初学者造成理解误差和使用困难。因为许多整合包都依赖于sd-scripts库,它自身就能支持绝大多数的训练场景,学会这个后,自己也可以根据自己的工作流搭整合包了。此外,Dreambooth和LoRA并不是指代某一类独立的训练方法,而是多种训练方法的组合,也需要清楚它们的作用和原理。本教程介绍了如何使用LoRA和Dreambooth两种微调技巧,从一个基础模型出发,训练出一个能够生成电子龙风格图像的AI画画模型。
原创
发布博客 2023.05.19 ·
4444 阅读 ·
5 点赞 ·
7 评论 ·
24 收藏

Linux的Shell变量、环境变量、代理设置

本文介绍了Shell、Shell变量和环境变量的定义、作用域和设置方法,以及在Linux上配置代理的具体步骤。Shell变量可以配置脚本中的各种参数和选项,而环境变量适用于需要跨进程传递参数的情况。本文还介绍了SSH连接Linux服务器的环境变量处理流程,以及在系统级别上设置代理的方法。
原创
发布博客 2023.04.16 ·
1557 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

【踩坑笔记】从零开始在Linux和Windows部署安装kIash

本文教程介绍了如何在Linux和Windows两个操作系统上安装klash。本文首先介绍了材料准备,提供了两个客户端。然后给出了详细的安装步骤,包括windows端的配置以及linux端的配置。最后提供了一些可能出现的问题和踩坑情况。
原创
发布博客 2023.02.26 ·
277 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

【后端笔记】如何设计高并发商品秒杀、抢红包场景

这两种场景通常表现为:由于数量有限,所有用户在同一时间读取和写入相关数据。例如,对于某些热门产品,比如抢购口罩,由于口罩数量有限,会有大量用户同时抢购,从而造成瞬时流量巨大。在高并发场景中,要尽量拦截请求,从前端和网关层进行限流。对写请求做串行化能减少很多问题。系统稳定性:前端页面层,网关层,服务层都要进行限流,尽量拦截请求。使用缓存减轻数据库压力,但要注意缓存击穿,可以使用写请求直接写缓存的方式。数据准确性:使用队列限制写请求数量,数据库用并发写锁,或者直接串行化解决超卖。写数据库后回写缓存解决
原创
发布博客 2023.01.01 ·
495 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

【踩坑笔记】从零开始部署安装Stable Diffusion 2 WebUI

本文介绍了从零开始配置Stable Diffusion 2 WebUI的步骤,包括安装Python虚拟环境、创建非root用户、正式安装webui、下载模型、启动等,并给出了一些常见错误的解决方法,最后提供了一些其他的建议。
原创
发布博客 2022.12.25 ·
27036 阅读 ·
17 点赞 ·
25 评论 ·
64 收藏

【踩坑笔记】Antd在移动端样式没有显示

Antd项目使用React+Antd+cra脚手架开发,在PC端Antd样式正常,但是在移动端却失效不显示,经过调研发现新版本Antd没有dist/antd.css文件,最终解决方案是在App.tsx里import “antd/dist/reset.css”,即可解决Antd样式的问题。
原创
发布博客 2022.12.23 ·
1548 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Python3常用操作代码块笔记(持续更新)

Python3常用操作代码块笔记(持续更新)代码免登陆复制读写相关读文件(UTF8)写文件(UTF8)写文件(CSV)Print输出到文件文件系统相关获取当前工作目录获取相对路径目录/文件是否存在获得文件后缀创建目录为文件或目录创建目录时间相关获得格式化的当前时间分析相关正则匹配JSON......
原创
发布博客 2022.07.30 ·
514 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

大家coding时的git目录就是工作目录么?会不会在擦键盘的时候git reset --hard了,然后一天白干

发布动态 2022.02.22

用latex写IEEE论文投稿的踩坑笔记

目录0. 安装TeXstudio1. 下载IEEE的LaTeX模板2. 修改引文方式1.更新IEEEtran.bst文件2.新建一个.txt文件,把bib格式的引文信息全都复制进去(方法如下),保存后把文件后缀名改为.bib3. 改一下代码里面的引文方式3. IEEE的图片、表格、公式1. 图片2. 表格3. 公式4. 作者和单位信息修改总结0. 安装TeXstudio我是看这篇博文做的1. 下载IEEE的LaTeX模板IEEE Template Selector,在Sel
原创
发布博客 2022.02.08 ·
7797 阅读 ·
38 点赞 ·
12 评论 ·
128 收藏

Win10远程登陆Ubuntu Desktop踩坑笔记

背景想使用Win10登陆云端Ubuntu界面。先尝试在阿里云ECS上安装Ubuntu Desktop。安装Ubuntu Desktopapt-get updateapt-get install vnc4serverapt-get install xfce4# 感觉直接用下面3行就可以了,aptitude会自动下载更新依赖库apt-get install aptitudeaptitude updateaptitude install ubuntu-desktop允许root登陆sudo
原创
发布博客 2022.01.21 ·
1327 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

原来进化的终点是毁灭(

发布动态 2021.07.02

python只用时间戳获得多天某时段的数据

当日0时至今所经过的秒数 = (时间戳-时区偏移) % (24*60*60)# 时间戳数据 [(时间戳1,数据项...),(时间戳2,数据项...),...,(时间戳n,数据项...)]data = [(1608591827 + i * 60 * 20) for i in range(100)] # 这里换成你的数据# 时区偏移bias = int(time.mktime(time.strptime('1970/1/2 00:00:00', '%Y/%m/%d %H:%M:%S'))).
原创
发布博客 2021.03.28 ·
255 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

大家都在用哪家的git平台呀,国内的哪家最好用?求推荐

发布动态 2021.03.06

机器学习西瓜书吃瓜笔记之(二)决策树分类 附一键生成决策树&可视化python代码实现

决策树分类(附一键生成可视化python代码实现)决策树决策树是用于分类任务的树结构,它的叶子结点为类别,其余节点为判断操作。决策树类似于日常中判断分类的方法。对某个样本进行分类时:从根节点开始得到所处节点的判断结果移动到满足结果的子节点上当移动到叶子结点上时,返回类别,否则转第2步研究决策树,重点在于如何构建决策树。构建决策树学习基本算法:输入: 训练集 D={(X1,y1),(X2,y2),...,(Xm,ym)} 属性集 A={a1,a2,.
原创
发布博客 2020.10.13 ·
3455 阅读 ·
12 点赞 ·
1 评论 ·
49 收藏

数值计算复习笔记之(一)误差定义

误差准确值与近似值的差距就是误差。误差通常来自于截断误差:由简化问题引起的误差,如求收敛级数之和的近似值cos(x)=1−x22!+x44!−x66!+⋯+(−1)nx2n(2n)!+⋯≈1−x22!cos(x)=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+\cdots+\frac{(-1)^nx^{2n}}{(2n)!}+\cdots\approx1-\frac{x^2}{2!}cos(x)=1−2!x2​+4!x4​−6!x6​+⋯+(2n)!
原创
发布博客 2020.10.11 ·
1357 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习西瓜书吃瓜笔记之(一)深入理解线性模型与logistics回归

入门概念机器学习两大基本问题(预期的输出是离散还是连续):回归问题:用多个变量拟合出一个连续值分类问题:用多个变量拟合出一个离散值机器学习三大理论(确定研究手段):传统监督学习(血糖预测、有无糖尿病预测)深度学习(自然语言处理、计算机视觉、端到端无人驾驶)强化学习(玩赛车、机器人开门)(写在最前:以下推导过程加入了个人理解,对原有公式有做修改,如有疑问或发现错误请提出,非常感谢)线性模型优势形式简单,可引入层级结构或高维映射升级成非线性模型可解释性强,w直观
原创
发布博客 2020.09.30 ·
250 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多