对于计量资料,临床医学研究中常用的统计分析方法是t检验;而对于计数资料,卡方检验是一个常用的统计分析方法。卡方检验基本原理是通过χ2值的大小来检验观测值(observed value, O)与理论值(expected value, E)之间的偏离程度。
t检验适用条件
1、样本量较小(其实不需要:http://blog.sina.com.cn/s/blog_4a5c956b0100rj7g.html)
2、正态分布(若不是,采用Wilcoxon检验)
如何判断是否为正态分布?
1、画直方图,如果呈倒钟型,则为正态分布
hist(data)
2、画QQ图,观察形状是否是一条连接主对角线的线,若是,那便是接近正态分布
qqnorm(data)
3、shapiro.test
这种检验方式适合于样本量比较小(N<20)的时候使用,原假设:样本取自正态分布的母体,如果 p-value大于0.05则无足够理由拒绝原假设,即为正态分布
shapiro.test(data)
R语言 t.test()参数解释
参数 | 释义 |
---|---|
x | 唯一的必选参数,一个数值型非空向量,若为单样本检验,那么这里就是那个样本;若为双样本检验,这里就是样本之一 |
y | 可选参数,单样本检验时可以为空,双样本检验时是样本之一 |
alternative | "two.sided"双侧检验,“greater”和“less”都是单侧检验,“greater”是右侧,“less”是左侧 |
mu | 单样本检验的时候是样本均值,双样本检验的时候是样本均值之差,默认值=0 |
spaired | 是否为配对t检验,TRUE为配对t检验 |
var.equal | 是否将两个样本的方差视为相等,一般来说如果不能很确定会相等,这里就设置为FALSE,默认值为FALSE。因此该函数默认地调用Welch t检验方法而不是student t检验。 |
conf.level | 置信度,e.g. 0.95 |
单样本t检验
https://zhuanlan.zhihu.com/p/150145802
已知总体均值、样本均值与标准差,检验某个样本的平均值是否等于目标值;
例:某游戏二次元属性用户的人均在线时长是否高于全体用户的均值200分钟?
t.test(data,mu=200) #mu表示的是平均数,p-value > 0.05,则没有足够理由拒绝原假设,此处原假设为该游戏二次元属性用户的人均在线与全体用户无差
两独立样本t检验
https://zhuanlan.zhihu.com/p/150479876
检验两个样本(来自同一个总体)的平均值是否有显著性差异;
例:ABtest的两个游戏用户样本人均在线时长是否有明显差异?
t.test(y1,y2)# p-value > 0.05,则没有足够理由拒绝原假设
两配对样本t检验
https://zhuanlan.zhihu.com/p/150923798
检验一个样本条件改变前后变化是否有显著性差异;
例:某次游戏活动前后,二次元属性玩家的人均在线时长是否有显著性差异?
t.test(y1,y2,paired=TRUE)# p-value > 0.05,则没有足够理由拒绝原假设