wps分析工具库如何加载_怎么在wps表格里面加入“数据分析”工具啊?

方法/步骤

1、先制作一个数据表格,把数据填入表格中。

e7db10f1c238f2fe9a8e410c636ca786.png

2、在软件顶部菜单栏中,点击【插入】,在插入的功能区,选择【图表】。

cb9bd6863fd678a30e152fe3dc4168af.png

3、点击图表后在弹出的窗口中,选择柱形下的第一个图表,然后选择【下一步】。

c3df67434d3a5b8f1972f06ecc029daf.png

4、进入到【源数据窗口】,在数据区域的输入框后方,点击那个选择图标。

89925d54a1186e09d66fae91f954dd04.png

5、点击后窗口便缩小至输入框大小,把鼠标放到1号的数据表格中,点击鼠标不放一直拖动鼠标到10号数据表格中。这时在源数据的输入框中,发现有一条读取数据的代码,然后再点击输入框右边的图标,还原窗口。

e6e683d5f786604f342d81d4332487fa.png

6、在还原窗口中,我们可以看到数据区域已经出现图表样式和数据分析结果。这里点击【完成】。

94c389a92f97e2f0f1bfe1ab46de4196.png

7、这时候数据图表就出来了,可以把鼠标放到图表上拖动图表,放置到合适的位置。如果想在不修改数据的情况下修改图表,那么就在图表上点击右键选择【图表类型】。

6c62d8b0fb7b310485bb26b92d42e7f9.png

8、然后便可修改为其他类型的图表,点击相应的图表后,便得出该图表对当前数据的分布结果。最后选择【确定】即可。

7eaf64adfab4b4bdd367ccf37a1ce878.png

wps2019数据分析加载_数据分析的思维和⽅法 ⼈⽣/⼯作的结果=思维⽅式*热情*能⼒ 数据分析常⽤的⼯具技能:统计学、sql数据、python、R、Excel、PPT 数据管理、分析、聚类 定义问题->数据收集(清洗)->数据建模->分析并输出结论(实现数据的管理、分析、聚类等) 数据分析岗位:⽬经历(能⼒+思考+定位)、理论知识体系+实践(⽬和能⼒范围) 数据岗位要求:四点:运营策略、客户需求、业务增长点、产品改进点 理解公司业务、建⽴运营分析体系 搭建完善的指标体系、提供数据⽀持 提供解决问题的策略和⽅案、撰写数据分析报告 数据分析常⽤的思维⽅式: 1、结构化/⾦字塔 画思维导图。重要的核⼼论点(⾦字塔顶:假设、问题、预测或者原因)->结果拆解(分论点,呈因果或者依赖关系)->MECE(相互独⽴, 完全穷尽)->验证(论点可量化,可验证) 2、公式化 在结构化基础上,加上数量关系(加减乘除)将论点进⾏量化分析,验证论点,梳理出指标体系。上下互为计算关系,左右呈关联。 3、业务化 深⼊了解业务情况,结合具体业务进⾏分析,有效落地执⾏分析结果。结构化+公式化表⽰的是⼀种现象,业务化思维深究这种现象的原 因,以数据结果推动业务。 业务的思维模式可以衍⽣出基础的分析⽅法:象限法、多维法、假设法、指数法、⼆⼋法、对⽐法和漏⽃法。 象限法:⽤户价值和⽤户流失度的⼆维象限,RFM(M:消费⾦额,F:消费频率,R:最近⼀次消费),象限的划分(中位数,平均数,经 验值)划分结果可⽤于⼀个策略落地。 多维法:品类、时间、地区等。⽤户统计维度(性别、年龄等)、⽤户⾏为维度(注册⽤户、⽤户偏好、⽤户兴趣、流失等)、消费维度 (消费⾦额、频率、⽔平等)、商品维度(商品品类、品牌、属性等) ->组成⽴⽅体,进⾏多维分析。其中⾟普森悖论: 将维度和类别进⾏细化,避免⾟普森悖论。 假设法:启发性思考,⽤于没有直观数据或线索可分析的时候。 指数法:衡量统⼀标准->对数据进⾏加⼯(线性加权、反⽐例、log),得到指标(⽤户忠诚度、热度公式:log(UV+5*C,2)+(Tim- Init)/10 UV:独⽴访问,C:评论数) ⼆⼋法:只抓重点,20%的变量产⽣80%的效果,持续关注topN有价值的数据,但注意仍不能放弃全局,拓宽思维。 对⽐法:⽐例或⽐率的数据指标,有竞争对⼿、类别、特征属性、时间同⽐、转化、前后变化的对⽐。发现数据间的规律,结合多维对⽐、 象限对⽐、假设对⽐等。 漏⽃法:流程化思考,⽤于变化、过程、流程的分析。单⼀的漏⽃分析没有⽤,和其他分析思维结合,⽐如多维和对⽐等。 如何锻炼数据分析思维:好奇⼼+⽣活中的练习。 2019-05-04 学习笔记 学习笔记 ⼤数据特点:数据量、发⽣频率、数据种类 费雪:农业领域的实验设计法 A/B测试(随机对照测验):排除不需要的因素的评价⽅法。为同⼀个优化⽬标制定两个⽅案(⽐如两个页⾯),让⼀部分⽤户使⽤A⽅ 案,同时另⼀部分⽤户使⽤B ⽅案,统计并对⽐不同⽅案的转化率、点击量、留存率等指标,以判断不同⽅案的优劣并进⾏决策。 技能:统计学知识+数据处理能⼒+业务知识 CRM(客户关系分析⼯具):如selfoffice 5w1h分析⽅法(when:时间 where:地点 who:性别年龄等 what:商品 why:购⼊⽬的 how:数量/销售形态/⾦额) 贝叶斯概率:其中P(A/B)是在B发⽣的情况下,A发⽣的可能性。 数据分析描述:直⽅图+散点图(描述数值型数据) 正态分布:以平均值为中⼼,呈左右对称 分类数据:交叉表+交叉分类 平均值、中位数、众数 标准差:表现数据的离散度 百分位数: 偏差值:把握在整体中位置的有效指标。 t检验:p value越⼩,显著⽔平越⾼。难以解释,侧重于运⽤层⾯,母集与⼦集存在偏差。 数据可视化:柱形图、饼图、百分化柱形图、折线图、箱型图:最⼤最⼩值,箱体为25%~75%,中线表⽰中位数。 数据清洗:异常数据 重复/缺失 模型:回归分析+统计决策树 随机森林+适⽤于时间序列的ARIMA+寻找最优解的单纯性⽅法 R:完全免费的统计分析⼯具 假设型+数据型 excel保存数据为CSV⽂件,⽂本形式的数据,可被多种软件读取。 数据与PHP语⾔结合,对录⼊错误数据可进⾏修正。 数据分析的PDCA(计划、实施、评价和改善) PV:页⾯访问量 CVR:转换率 UV:独⽴访问量 《商务数据分析与应⽤》 《商务数据分析与应⽤》--读书笔记 读书笔记 ⼀、商务数据分析原理 ⼀、商务数据分析原理 数据分析流程:明确分析⽬的和框架、数据收集(内部和外部渠道)、数据处理、数据分析数据可视化、撰写报告(结论建议和解决⽅ 案) 数据分析原则:科学性、系统性、针对性、实⽤性和趋势性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值