python获取验证码失败_python识别验证码的思路及解决方案

本文介绍了Python识别验证码的常见步骤,包括灰度处理、二值化、降噪、字符切割等,并提供了一个实际案例,展示了如何通过图像处理和哈希值比对来识别验证码。主要涉及的库有pytesseract、OpenCV、imagehash和PIL等。
摘要由CSDN通过智能技术生成

1、介绍

在爬虫中经常会遇到验证码识别的问题,现在的验证码大多分计算验证码、滑块验证码、识图验证码、语音验证码等四种。本文就是识图验证码,识别的是简单的验证码,要想让识别率更高,识别的更加准确就需要花很多的精力去训练自己的字体库。

识别验证码通常是这几个步骤:

(1)灰度处理

(2)二值化

(3)去除边框(如果有的话)

(4)降噪

(5)切割字符或者倾斜度矫正

(6)训练字体库

(7)识别

这6个步骤中前三个步骤是基本的,4或者5可根据实际情况选择是否需要。

经常用的库有pytesseract(识别库)、OpenCV(高级图像处理库)、imagehash(图片哈希值库)、numpy(开源的、高性能的Python数值计算库)、PIL的 Image,ImageDraw,ImageFile等。

2、实例

以某网站登录的验证码识别为例:具体过程和上述的步骤稍有不同。

首先分析一下,验证码是由4个从0到9等10个数字组成的,那么从0到9这个10个数字没有数字只有第一、第二、第三和第四等4个位置。那么计算下来共有40个数字位置,如下:

那么接下来就要对验证码图片进行降噪、分隔得到上面的图片。以这40个图片集作为基础。

对要验证的验证码图片进行降噪、分隔后获取四个类似上面的数字图片、通过和上面的比对就可以知道该验证码是什么了。

以上面验证码2837为例:

1、图片降噪

2、图片分隔

3、图片比对

通过比验证码降噪、分隔后的四个数字图片,和上面的40个数字图片进行哈希值比对,设置一个误差,max_dif:允许最大hash差值,越小越精确,最小为0。

这样四个数字图片通过比较后获取对应是数字,连起来,就是要获取的验证码。

完整代码如下:

#coding=utf-8

import os

import re

from selenium import webdriver

from selenium.webdriver.common.keys import Keys

import time

from selenium.webdriver.common.action_chains import ActionChains

import collections

import mongoDbBase

import numpy

import imagehash

from PIL import Image,ImageFile

import datetime

class finalNews_IE:

def __init__(self,strdate,logonUrl,firstUrl,keyword_list,exportPath,codepath,codedir):

self.iniDriver()

self.db = mongoDbBase.mongoDbBase()

self.date = strdate

self.firstUrl = firstUrl

self.logonUrl = logonUrl

self.keyword_list = keyword_list

self.exportPath = exportPath

self.codedir = codedir

self.hash_code_dict ={}

for f in range(0,10):

for l in range(1,5):

file = os.path.join(codedir, "codeLibrary\code" +  str(f) + '_'+str(l) + ".png")

# print(file)

hash = self.get_ImageHash(file)

self.hash_code_dict[hash]= str(f)

def iniDriver(self):

# 通过配置文件获取IEDriverServer.exe路径

IEDriverServer = "C:\Program Files\Internet Explorer\IEDriverServer.exe"

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值