arm nodejs_在ARM盒子上使用IEF和Tensorflow Lite运行边缘AI

0c65decb71d80047d7a2f7fedd2aad0c.png 910f2fcb5d522f2bb8d8299cf8a9f9c6.gif

场景介绍

在ARM盒子(我使用atlas500,arm64v8架构可以直接使用代码和镜像)上,接入网络摄像头,使用tensorflow lite框架,对图像进行图像分类推理,图像分类推理结果通过MQTT协议推送到web页面上进行展示。参考"在ARM盒子使用IEF和Tensorflow运行边缘AI",这次使用tensorflow lite框架,并把对象检测模型更换成图像分类模型。

6cf3841558b226de004d28b21e25168c.png

运行环境

  1. 网络摄像头,支持RTSP协议,ipc格式

  2. 智能小站(atlas500),

    EulerOS(https://e.huawei.com/cn/material/enterprise/030106f2129145efa9c9bb472c7b0058\)

  3. tensorflow1.4.0,python2.7

  4. mosquitto 1.6.5

  5. python: opencv-python 4.1.1, paho-mqtt 1.4.0

  6. nodejs: mqtt 3.0.0, react 16.9.0

安装运行步骤

参考"在ARM盒子上使用IEF和Tensorflow运行边缘AI",本文仅更换成tensorflow lite框架,并使用图像分类模型。

通过tensorflow对图像进行图像分类推理

先从

https://tensorflow.google.cn/lite/models/image_classification/overview

下载图像分类模型

https://storage.googleapis.com/download.tensorflow.org/models/tflite/mobilenet_v1_1.0_224_quant_and_labels.zip

并解压出模型和分类标签。

参考

https://github.com/tensorflow/examples/blob/master/lite/examples/image_classification/raspberry_pi/classify_picamera.py

代码,添加opencv对rtsp协议进行解析,并获取每一帧图像。针对图像数据,运行模型推理进行图像分类。最终推理的结果使用MQTT协议把结果发送出来。

参考代码-----如下;

5c6b86b6b18826d6d5d13b4622c44ecb.png ed3c8c98898bd5e472c357aab3160b77.png 6148bd83bd3d452d540f557ab916f1d8.png

完整的docker image可以在docker hub上参考

braveyuyong/tf_on_atlas:tagname:0.2.1-lite,

参考dockerfile如下:

6a64604b5029bc02e46275acc4578771.png

最终效果

参考"在ARM盒子使用IEF和Tensorflow运行边缘AI"中下发应用,最终通过浏览器IE11打开 http://192.168.1.111:3001,如果能看到摄像头视频流和图像分类结果,表明大功告成!

67ef03f96064894c126282fc7b5ac34a.png 22ea541b80d9198bbec53105a8ba7f98.gif

END

d6a0902e9e5957a3a9e726979646104b.gif

边缘计算直播课

e0d627724222b736e4d061a3b3dd79c0.gif

CloudNative Lives系列直播课程

《KubeEdge技术详解与实战》

第一课回放视频&课后答疑已出

明晚20:00第2节开课

直播地址:

https://huaweicloud.bugu.mudu.tv/watch/3o3kjz7v

扫描下图二维码加入学员群,享更多福利

e694451cf1ddd7b41a5b832e955c036d.png

扫码并备注kubeedge加入群聊

微信号 : k8s2222

点击下方

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值