话不多说,今天我们继续介绍PROC SGPLOT过程步。
一、数据的理解
(十二)数据集的处理
人口金字塔图是将人口的性别年龄构成用几何图形的形式表示出来,从而更鲜明更形象地反映人口性别年龄状况、类型和未来发展趋势。根据分析目的不同可以绘制绝对数金字塔和相对数字金字塔。人口金字塔由横向条形图构成,每一条代表一个年龄组;年龄从小到大由图的最低部向最高部排列;男性通常位于图的左边,女性位于右边;条形图的长短表示每个年龄组男性和女性的人数或比例;年龄分组为等距,组距通常为5岁。
*===人口金字塔图;DATA POPULATION; INPUT AGE $ MALE FEMALE @@; DATALINES;90~ 500 110685~ 1781 277680~ 5208 648575~ 9961 1095770~ 13742 1409265~ 18302 1823660~ 26905 2632155~ 35623 3494150~ 30827 2966545~ 51158 4906540~ 54025 5197835~ 47115 4490230~ 41812 4023525~ 44287 4365320~ 43000 5129415~ 40092 3589710~ 32814 280285~ 32838 275860~ 35010 29857;RUN;DATA BARPARM; SET POPULATION; MALE=-MALE;RUN;PROC FORMAT; PICTURE POSITIVE LOW-<0='00000' 0='00000';RUN;PROC SGPLOT DATA=BARPARM; FORMAT MALE FEMALE POSITIVE.; HBARPARM CATEGORY=AGE RESPONSE=MALE; HBARPARM CATEGORY=AGE RESPONSE=FEMALE; XAXIS DISPLAY=(NOLINE NOLABEL) VAULES=(-60000 TO 60000 BY 200000); YAXIS DISPLAY=(NOLINE NOLABEL); KEYLEGEND / POSITION=TOPRIGHT;RUN;
图7-28 某年某市不同年龄性别人口数据的人中金字塔图
(十三)点图
点图(Dot Plot)又叫克利夫兰点图(Cleveland Dot Plot),也是常用的滑珠散点图,强调数据的排序展示以及数据之间的差距,克利夫兰点图一般以横向展示,即Y轴是类别型变量,X轴是需要展示的数据值。PROC SGPLOT过程步绘制点图的基本语法如下:
*===点图;PROC SGPLOT DATA=DOTPLOT(WHERE=(AREA="RURAL")); DOT AGE /GROUP=GENDER RESPONSE=WEIGHT STAT=MEAN LIMITSTAT=STDDEV NUMSTD=1;RUN;
图7-29 某地5岁以下儿童平均体重的点图
(十四)数据集的处理
为了估计散点图的可能位置,用椭圆线圈出置信区间,PROC SGPLOT过程步绘制椭圆图的基本语法如下:
*===椭圆图;PROC SGPLOT DATA=ANA; SCATTER X=HIGHT Y=WEIGHT/ GROUP=GENDER; XAXIS VALUES=(130 TO 220 BY 20); YAXIS VALUES=(30 TO 110 BY 20); ELLIPSE X=HIGHT Y=WEIGHT;RUN;
图7-30 某人群身高与体重关系的椭圆曲线图
(十五)局部加权回归散点平滑曲线
有时候变量间的关系不具备直线性,可以考虑用局部加权回归散点平滑法(Locally Weighted Scattered Plot Smoothing,LOESS),PROC SGPLOT过程步绘制LOESS曲线的基本语法如下:
*===局部加权回归散点平滑曲线图;PROC SGPLOT DATA=ANA; LOESS X=HIGHT Y=WEIGHT; XAXIS VALUES=(140 TO 190 BY 20); YAXIS VALUES=(40 TO 100 BY 20);RUN;
图7-31 某人群身高与体重的散点平滑曲线
(十六)样条曲线
样条曲线是指给定一组控制点而得到一条曲线,曲线的大致形状由这些点予以控制,一般可分为插值样条和逼近样条两种。PROC SGPLOT过程步绘制SPLINE曲线的基本语法如下:
*===样条曲线图;PROC SGPLOT DATA=ANA; PBSPLINE X=LDL Y=HDL;RUN;
图7-32 HDL与LDL两变量的样条曲线图
(十七)森林图
森林图(Forest Plot)是以统计指标和统计分析方法为基础,用数值运算结果绘制出的图形。在平面直角坐标中,以一条垂直为基础,用平行于横轴的多条线段描述了每个被纳入研究的效应量和可信区间,用一个棱形(或其他图形)描述多个研究的合并结果,是综合分析和多中心研究常用的一种统计图形。在PROC SGPLOT过程步中没有直接绘制森林图的语句,需要FEFLINE语句、HIGHLOW语句和SCATTER语句组合应用。PROC SGPLOT过程步REFLINE语句和HIGHLOW语句的基本语法如下:
DATA FOREST; INPUT STUDY: $100. OR LCL UCL WEIGHT @@; X1=OR/(10**(WEIGHT*0.01/2)); X2=OR*(10**(WEIGHT*0.01/2)); CI=CATS(OR,"(",LCL,"-",UCL,")"); CINAME="95%CI"; IF STUDY="OVERAL" THEN STUDY1=STUDY; ELSE STUDY2=STUDY; DATALINES;LIUCHUANHUI(2008) 1.12 0.91 1.38 5.7LIUXIAOHUI(2008) 1.03 0.88 1.21 10.3LIUPING(2018) 1.16 0.99 1.36 12.7LIUJUN(2020) 1.33 0.95 1.87 5.0LIHONG(2017) 1.20 0.91 1.59 6.7SUNYONG(2011) 1.19 0.99 1.43 7.3FANGPI(2012) 1.14 0.83 1.56 5.4CAOLAN(2006) 1.03 0.94 1.12 12.7WANGXI(2012) 1.03 0.94 1.13 10.0TONGHAI(2009) 1.21 1.02 1.44 11.0ZANGYIN(2004) 1.02 0.86 1.21 9.5ZHAOJIAO(2011) 1.12 0.77 1.64 3.9OVERAL 0.328 0.233 0.462 .;RUN;PROC SGPLOT DATA=FOREST NOLEGEND; SCATTER Y=STUDY1 X=OR /MARKERATTRS=(SIZE=12 SYMBOL=DIAMONDFILLED COLOR=BLACK); HIGHLOW Y=STUDY2 HIGH=X2 LOW=X1/LINEATTRS=(THICKNESS=10 COLOR=BLACK); HIGHLOW Y=STUDY HIGH=UCL LOW=LCL/LINEATTRS=(THICKNESS=2 COLOR=BLUE); REFLINE 1 /AXIS=X; SCATTER Y=STUDY X=CINAME /MARKERCHAR=CI X2AXIS MARKERCHARATTRS=(SIZE=12 COLOR=RED); XAXIS TYPE=LOG MIN=0.01 MAX=10 MINOR OFFSETMAX=0.3 OFFSETMIN=0 DISPLAY=(NOLABEL) VALUEATTRS=(SIZE=12); X2AXIS OFFSETMIN=0.85 DISPLAY=NONE; YAXIS DISPLAY=(NOTICKS NOLABEL) DISCRETEORDER=DATA VALUEATTRS=(SIZE=12) REVERSE;RUN;
图7-33 某药临床疗效总有效率的森林图
整理不易,欢迎点亮再看哦!
参考文献:
[1] 谷鸿秋. SAS编程演义[M]. 北京:清华大学出版社,2017.
[2] 高惠璇. SAS系统Base SAS软件使用手册[M]. 北京:中国统计出版社,1997.
[3] https://support.sas.com/en/software/base-sas-support.html.
[4] 夏庄坤, 徐唯, 潘红莲, 等. 深入解析SAS——数据处理、分析优化与商业应用[M]. 北京: 机械工业出版社,2014.
整理不易,欢迎点亮再看! 【赠人玫瑰,手留余香】
----------------------------------------------
SAS系列13:SAS数据可视化(二)
SAS系列12:SAS数据可视化(一)
SAS系列11:SAS基础统计过程(三)
SAS系列10:SAS基础统计过程(二)
SAS系列09:SAS 基础统计计算过程
SAS系列08:SAS函数
SAS系列07:SAS数据整理(三)
SAS系列06:SAS数据整理(二)
SAS系列05:SAS数据整理(一)
SAS系列04:SAS数据导入
SAS系列03:SAS入门(二)之SAS编程语言基础
SAS系列02:SAS入门(一)
SAS系列01:统计分析航空母舰-SAS简介
----------------------------------------------
精鼎特邀
