周长最短面积最大_圆内接三角形中,正三角形周长最大值的证明

本文探讨了圆内接三角形的最值问题,证明在所有内接三角形中,等边三角形的周长具有最大值。通过从一般到特殊的解决思路,阐述了证明过程,并解释了为何EF在BC下方的情况无需考虑。欢迎大家提出意见,共同学习进步。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       最值问题是数学问题中的常见问题,比如:日常生活中,我们常常通过“走直线”使我们能够更快地到达终点,这里就是用到“两点之间线段最短”的基本事实(其他版本的教材中称为“公理”);再比如:用一根绳子,围成一个封闭的平面图形,圆的面积是最大的;……这样的问题数不胜数.

b6499b227aa42c9ee28bb6a2a225f571.png

       解决最值为题的基本思路就是从一般到特殊的过程,把一般性情况和特殊情进行对比,从而确定特殊情况下的结果是最大(或最小)从而达到求出最值的目的.

d9397b75c886febccd6e6173722c2141.png

       今天在数学老师交流群看到一个比较新奇的最值为题——证明:圆的所有内接三角形中,等边三角形的周长最大.

0b7141f66a9d8036e1538ff6902228c6.png

      初看这个题目,确实难度不小,但第一小题的结论可以给我们一些启发:

63f5fea8e208f859b72fa2335a711d97.png

  第一小题就是利用阿基米德折弦定理,证明: BP+CP=2BK.熟练了可以直接使用这个结论. 有了第一题的基础,我们在看第二题,也就有了一个大概的思路:  一、先任意画一个圆的内接三角形,利用第一题的结论,找到比它周长更大的三角形——等腰三角形,为了方便后面的证明,在这里我选择以这个 三角形的最长的边为底边,构造等腰三角形,如下所示:

0c2b0a15dab178710474173019815d98.png

注意,这里的MN是最大的边,所以MN所对的圆周角一定大于60度,也就是说,他比60度的圆周角所对的弦要大,为第三步中EF在圆心O与BC之间给出了说明,

332a73d348fe719903a291193655b640.png

0eaf773d0b9e583284e812623d149230.png

       最后,我要重点解释一下一个问题:为什么没有说明EF在BC下方的情况:

因为在第一步已经是取△PNM的最长的边为底,利用(1)中的方法构造等腰三角形,故∠MPN大于60度,所以MN一定是大于EF的.

  证明过程中也许还存在不尽人意的地方,欢迎广大读者批评指正。可以把您的意见通过留言的形式反馈给我,也可以私下发给我,大家共同学习,一起进步。

0c342a5b5962dccb2e91a11348f0dcac.png

0f51b9ae166aaee60e064a5185b03db9.png

90e2b42ed3c6895ff144b4060dfcf591.png

2c75ce65df1bae9c0019d47997e360de.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值