最值问题是数学问题中的常见问题,比如:日常生活中,我们常常通过“走直线”使我们能够更快地到达终点,这里就是用到“两点之间线段最短”的基本事实(其他版本的教材中称为“公理”);再比如:用一根绳子,围成一个封闭的平面图形,圆的面积是最大的;……这样的问题数不胜数.
解决最值为题的基本思路就是从一般到特殊的过程,把一般性情况和特殊情进行对比,从而确定特殊情况下的结果是最大(或最小)从而达到求出最值的目的.
今天在数学老师交流群看到一个比较新奇的最值为题——证明:圆的所有内接三角形中,等边三角形的周长最大.
初看这个题目,确实难度不小,但第一小题的结论可以给我们一些启发:
最后,我要重点解释一下一个问题:为什么没有说明EF在BC下方的情况:
因为在第一步已经是取△PNM的最长的边为底,利用(1)中的方法构造等腰三角形,故∠MPN大于60度,所以MN一定是大于EF的.
证明过程中也许还存在不尽人意的地方,欢迎广大读者批评指正。可以把您的意见通过留言的形式反馈给我,也可以私下发给我,大家共同学习,一起进步。