13章是有机材料和有机高分子,讲不动。而且其中的“新材料”是超支链聚合物,碳60和碳纳米管,液晶等,时代不同了,材料学发展得太快了,感觉做这些的现在基本都在玩MOF、COF、石墨烯等新材料了吧。
14章是为了介绍后面的周环反应和光化学反应等涉及更深化学键内容,而增加的对第一章的补充,由于默认读者学过结构化学/物理化学,直接从波函数开始讲的。国内教材一般直接会在第一章就介绍完这些内容,本书分开操作也是为了“循序渐进”。这块内容有两种思路,一个是不讲原理直接画图,比如福井谦一的《图解量子化学》,也有从量子力学背景慢慢讲的。发现有很多高中生订阅了这专栏,虽然能看到这里的应该不多,但是简单讲讲吧。当然最好还是要翻一翻《结构化学》的教材。
本笔记只有入门内容,讲的也很简单,因为这是一本有机化学教材,我也不是很懂这些。本章1-4节是结构化学内容+计算方法的介绍,想看有机内容请直接看十四章第五节。
老的教材一般会简单讲讲分析力学的内容,比如曹阳的《量子化学引论》[1](开头一些力学内容就来自这本书),但后来可能觉得这是物理里的东西,就不说了。反正化学上经验总结的公式多了,长得在奇怪的公式都可能是经验总结的,一句“薛定谔方程就是量子力学里的牛顿定律,没有为什么”可以减少很多麻烦。好一些的老师会说薛定谔方程来自量子力学的基本假设。本书默认读者学过,是直接从波函数讲起的。那种为了不给人一种“量子力学就是解薛定谔方程”的感觉而从线性代数讲起教材,化学向的还不多。化学向的教材里还有像《上帝掷骰子吗》一样,从科学史入手的书。
作为笔记,不如讲讲力学。这个知乎上介绍的非常得多。
東雲正樹:分析力学开端,拉格朗日力学或源于常见结论?zhuanlan.zhihu.com

首先我们都很熟悉由牛顿定律描述的微分方程:
听起来很玄乎,其实就是说“作用于一个物体的外力与动力的反作用之和等于零。”受约束的非自由质点受有主动力F及约束力FN,如果再加上虚构的惯性力(达朗贝尔惯性力)FI=-ma,则下式成立:F+FN+FI=0 。
看起来还是很玄乎,但写出来是:
看起来只是牛顿第二定律的式子换了一个写法。但它可以写成解析的,这样就没有矢量运算了。
上面这个式子就很方便了,记得当年参加过高中物理竞赛的同学,很喜欢讲上面这个式子。有的时候体系不是直角坐标系,比如氢原子一般用的球坐标,所以需要引入“广义坐标”,物化里我们学过这个东西,确定N个质点需要有3N个位置坐标,如过有两个质点距离固定这种约束条件时,有k个约束,需要的位置坐标就少k个,f=3N-k,这个就是自由度,和物化中的定义一样。
即一个f个自由度的系统就可以用2f个独立参量
高中物理里我们学过能量守恒定律,保守体系中动能T和势能V的和是常数。对于最简单的一维体系,
我们前面说了要用能量与功来描述物体运动与相互作用之间的关系,所以牛顿方程可以改写成
一个
化学热力学中,我们使用Legendre变换把广延变量V和S的函数U(V,S)转化成了强度变量T和p的函数G(T,p)。
化学势的起源?是谁在哪里引入的化学势的概念,是怎么样定义的,为什么要引入化学势?www.zhihu.com
将朗格朗日力学中的所有的
将
按照广义动量定义
让上面的式子不含
代入上面的式子:
合并一下得到:
类似G=U-TS+pV,我们定义
为什么要Legendre变换呢?最简单的理解就是H是广义坐标和广义动量和函数。其次,他自身的意义很重要。我们还是不讨论过于复杂的证明,从一维体系讨论。把p和L的定义带进去。
一维时,
所以H=2T-T+V=T+V。哈密顿函数就是体系的总能量。这里其实还有正则变换等内容,但应该用不到。
哈密顿方程很重要,看几个例子(都是书上的)。
例一,势函数为V的场中运动的质点的哈密顿函数:
按动量定义
再按定义
例二,电子在二维空间库仑场中的拉格朗日函数、方程和哈密顿函数,用极坐标。
拉格朗日函数是
哈密顿函数是
拉格朗日方程是
以上是分析力学的内容,本书最多会讲哈密顿函数的问题,所以看不懂也无所谓。虽然不会讲太多的力学,但因为会讲计算方法所以有变分法原理,又因为介绍了密度泛函方法,所以会提到泛函的概念,上面这个方程的变分法推导可以简单了解一下。
结构化学中会用到变分法原理的内容是“Schrädinger 方程的任何近似解得到的能量E总是比真实能量要高。因此,我们尽可能优化波函数的总能量以接近真实能量。”
记得大三课上,老师为了讲变分法,花了半节课的时间用幂函数拟合三角函数半个周期的图像……
变分法是讨论函数的极值的,但这些函数的定义域是一个无限维空间:曲线的空间。这种函数叫做泛函。可以证明,若泛函是可微的,则其微分是唯一的,泛函的微分又称为其变分。
简单说泛函是函数的函数,动力学里讲过的反应集合的函数就是类似的概念在化学的应用。一个经典例子是曲线长度。举个二维的例子,比如函数曲线的集合A={(x,y)|y=y(x), x0≤x≤x1},则

[]括号里的东西看起来很眼熟,就是欧拉-拉格朗日方程左边的部分。这个方程和牛顿力学定律对照就有前面讲的那些东西了。

这里还涉及到“最小作用原理(哈密顿原理)”:

这是为什么讲最速降曲线时经常扯到光的折射的原因,又比如:
- 一根两端固定的悬链,其自然下垂的时候重心最低
- 热力学系统平衡时,熵值最大
- 由于表面张力,水珠尽可能的保持球形(因为相同体积的物体,球形表面积最小)
物理之美什么的经常讲以上的内容,所以应该经常看到相关的科普文章。
曹阳的《量子化学引论》中还有微分方程、偏微分方程、线性代数、光学……的介绍,真的是保姆级的引论,没那么多时间讲这些,还是回到教材吧。
14. 1 量子力学导论
“本节的目的在于通过对量子力学的简要总结帮助读者逐步建立起分子轨道和化学键的现代观念。”本书的推到明显不是详尽和严格的,更多地是结论,因为这一章是为了推广“电子结构新概念”而进行的科普。
14. 1. 1 波函数的性质
量子力学最基本的观点之一是认为物质如同光一样会发生干涉现象。20 世纪20年代, De Broglie 发现电子像电磁辐射一样发生衍射。也就是说,电子具有波粒二相性,这也是光的内在特性。在经典力学中,波的数学表达形式是振幅函数或波函数以[ψ(r,t)] , 它依赖于位置(r) 和时间(t)。[2]
波函数ψ(r,t) 通过空间坐标r 和时间t 描述波在三维空间中的状态。对于波来说,波函数描述了它的所有可观察的性质。这些波函数能包含体系可观测的所有信息。所以,整体建立电子、原子和分子的波函数,对理解化学结构和反应的本质有着极其重要的意义。
波函数有三个基本条件连续性,有限性(归一性)和单值性,至于波的随时间变化和可叠加性,高中光学里就有了。

其他的,比如概率波解释和波函数模的平方就是概率密度,这些应该都知道。一些教材会从光学的角度引入这些概念。
另一些教材,从概率出发,也可以讨论这些问题,比如Griffiths的《量子力学概论》里,就花了很多的篇幅讲这些内容。
14.1. 2 定态(不含时间t的)Schrödinger 方程
对于电子,我们所关心的一切信息都可以从它的波函数得到。因此,求解电子波函数是必要的。量子力学中对波函数的描述通过Schrödinger 方程来实现的。就是下面这个:
这里的H 是能量的算符,称为哈密顿(Hamiltonian)算符,E是能量,所以这个哈密顿还是“总能量”的算符,它描述了体系中电子和原子核的可能相互作用。算符表示对函数的数学计算过程(如微分、乘法)。上式表明算符H 作用函数ψ后,等于相同的函数ψ乘以一个常数E 。这是本征值问题,ψ称为本征函数, E称为本征值。
本章中提到的符号Ψ、ψ和φ件作如下定义。符号Ψ表示所研究的整个体系的波函数(通常为分子)ψ表示分子轨道波函数,φ表示原子轨道波函数。另外, E 表示整个体系的能量(本征值) ,E;表示单个轨道的能量(本征值);H 表示Hamiltonian 算符, h表示Planck 常量。
14.1.3 Hamiltonian 函数
之前我们介绍了,H=T+V,其中T和动量p有关。根据概率波的定义有

<x>是x的“期望”。上面这个关系的推导可以参考一些量子力学教材。这说明虽然有波粒二象性,但粒子的“位置”是可以用算符-本征值“观测”的,即

和<x>的公式比较一下,有

于是,表示总能量的哈密顿算符可以写成:

有时为了书些方便,上面的共轭积分可以用狄克拉符号简化。<ψ|称为左矢bra,|ψ>称为右矢ket(“括号”bracket的左边和右边)。

这时能量的期望值(就是数学里的那个期望):

书上这里给了一个氢原子薛定谔方程径向解的例子。

14.1.4
作者这里又来了一段哲学思考,我没有看懂,只能体会出这个符号是函数“梯度的变化率”这一点,和动能的关系不知道。原文是“波的动能是动能在整个空间的平均值——波函数梯度的平均变化。”下图是氢原子各个轨道径向函数的“截图”。

书上原文说:
波A (1s) 的动能最低,因为相比波B(2s),C(2p) 和D(3p),波A (1 s) 的波形坡度变化最小。波D(3p) 的波形坡度变化最大,也就具有最大的动能。但是,波B(2s) 和C(2p) 就很难定性地确定谁的功能更小,必须通过计算来确定。计算动能时需注意的是,轨道的节点越多,能量越高。
既然轨道动能的下降正如它向空间传播一样,为什么电子不分布到无穷远?原因在于束缚电子和自由电子与原子核之间静电吸引作用。这里存在电子动能向空间的衰减和原子核的静电吸引(势能)的平衡。功能和势能的平衡导致了键的产生,这是后面章节将提到的。
上一章:
想象中:《现代物理有机化学》笔记 第十二章 金属有机(5)反应讨论3zhuanlan.zhihu.com
下一节:化学键及其它。
想象中:MPOC 笔记 第十四章 (2)复杂薛定谔方程的求解1zhuanlan.zhihu.com
目录:
- 《现代物理有机化学》笔记 第一章 化学键基础(1)
- 《现代物理有机化学》笔记 第二章 张力和稳定性(1)
- 《现代物理有机化学》笔记 第三章 溶液和非共价结合力(1)
- 《现代物理有机化学》笔记 第五章 酸碱(1)
- 《现代物理有机化学》笔记 第六章 立体化学(1)
- 《现代物理有机化学》笔记 第七章 动力学(1)
- 《现代物理有机化学》笔记 第八章 机理相关实验(1)
- 《现代物理有机化学》笔记 第九章 催化(1)
- 《现代物理有机化学》笔记 第十章 机理(1)
- 《现代物理有机化学》笔记 第十一章 机理2(1)
- 《现代物理有机化学》笔记 第十二章 金属有机(1)
- 《现代物理有机化学》笔记 第十四章 电子结构理论新概念(1)
- 《现代物理有机化学》笔记 附录五
参考
- ^曹阳. 高等学校数学参考书 量子化学引论[M]// 高等学校数学参考书, 量子化学引论. 人民出版社, 1980.
- ^有一个考题是:写出一个能反映波粒二象性的公式——可以写p=h/λ。动量是粒子的,波长是波的。