生成唯一订单号_美团点评分布式ID生成系统

本文介绍了美团点评在分布式系统中为何需要ID生成系统,以及系统的需求,包括全局唯一性、趋势递增、单调递增和信息安全。讨论了UUID和SnowFlake算法的优缺点,并提出了数据库自增ID机制和Redis解决方案。重点阐述了美团的Leaf-Snowflake系统,它使用Zookeeper解决时钟回拨问题,确保高可用性和ID的全局唯一性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

为什么分布式系统需要用到ID生成系统

在复杂分布式系统中,往往需要对大量的数据和消息进行唯一标识。如在美团点评的金融、支付、餐饮、酒店、猫眼电影等产品的系统中,数据日渐增长,对数据库的分库分表后需要有一个唯一ID来标识一条数据或消息,数据库的自增ID显然不能满足需求;特别一点的如订单、骑手、优惠券也都需要有唯一ID做标识。此时一个能够生成全局唯一ID的系统是非常必要的。

概括下来,业务系统对ID号的要求有哪些呢?

ID生成系统的需求

1.全局唯一性:不能出现重复的ID,最基本的要求。
2.趋势递增:MySQL InnoDB引擎使用的是聚集索引,由于多数RDBMS使用B-tree的数据结构来存储索引数据,在主键的选择上面我们应尽量使用有序的主键保证写入性能。
3.单调递增:保证下一个ID一定大于上一个ID。
4.信息安全:如果ID是连续递增的,恶意用户就可以很容易的窥见订单号的规则,从而猜出下一个订单号,如果是竞争对手,就可以直接知道我们一天的订单量。所以在某些场景下,需要ID无规则。

第3、4两个需求是互斥的,无法同时满足。

同时,在大型分布式网站架构中,除了需要满足ID生成自身的需求外,还需要ID生成系统可用性极高。想象以下,如果ID生成系统瘫痪,那么整个业务无法进行下去,那将是一次灾难。
因此,总结ID生成系统还需要满足如下的需求:
1.高可用,可用性达到5个9或4个9。
2.高QPS,性能不能太差,否则容易造成线程堵塞。
3.平均延迟和TP999(保证99.9%的请求都能成功的最低延迟)延迟都要尽可能低。

ID生成系统的类型

UUID

UUID是指在一台机器在同一时间中生成的数字在所有机器中都是唯一的。按照开放软件基金会(OSF)制定的标准计算,用到了以太网卡地址、纳秒级时间、芯片ID码和许多可能的数字
UUID由以下几部分的组合:
(1)当前日期和时间。
(2)时钟序列。
(3)全局唯一的IEEE机器识别号,如果有网卡,从网卡MAC地址获得,没有网卡以其他方式获得。
标准的UUID格式为:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx (8-4-4-4-12),以连字号分为五段形式的36个字符,示例:550e8400-e29b-41d4-a716-446655440000
Java标准类库中已经提供了UUID的API。

优点

  • 性能非常高:本地生成,没有网络消耗。

缺点

  • 不易存储:UUID太长,16字节128位,通常以36长度的字符串表示,很多场景不适用。
  • 信息不安全:基于MAC地址生成UUID的算法可能会造成MAC地址泄露,这个漏洞曾被用于寻找梅丽莎病毒的制作者位置。
  • ID作为主键时在特定的环境会存在一些问题,比如做DB主键的场景下,UUID就非常不适用。

SnowFlake雪花算法

雪花ID生成的是一个64位的二进制正整数,然后转换成10进制的数。64位二进制数由如下部分组成:

9320e88e2e94b5ea9dc42c89835d0123.png

snowflake id生成规则

  • 1位标识符:始终是0,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般是正数,最高位是0。
  • 41位时间戳:41位时间截不是存储当前时间的时间截,而是存储时间截的差值(当前时间截 - 开始时间截 )得到的值,这里的的开始时间截,一般是我们的id生成器开始使用的时间,由我们程序来指定的。
  • 10位机器标识码:可以部署在1024个节点,如果机器分机房(IDC)部署,这10位可以由 5位机房ID + 5位机器ID 组成。
  • 12位序列:毫秒内的计数,12位的计数顺序号支持每个节点每毫秒(同一机器,同一时间截)产生4096个ID序号

优点

  • 简单高效,生成速度快。
  • 时间戳在高位,自增序列在低位,整个ID是趋势递增的,按照时间有序递增。
  • 灵活度高,可以根据业务需求,调整bit位的划分,满足不同的需求。

缺点

  • 依赖机器的时钟,如果服务器时钟回拨,会导致重复ID生成。
  • 在分布式环境上,每个服务器的时钟不可能完全同步,有时会出现不是全局递增的情况。

snowflake Java实现

数据库自增ID机制

主要思路是采用数据库自增ID + replace_into实现唯一ID的获取。

replace into跟insert功能类似,不同点在于:replace into首先尝试插入数据列表中,如果发现表中已经有此行数据(根据主键或唯一索引判断)则先删除,再插入。否则直接插入新数据。
当然为了避免数据库的单点故障,最少需要两个数据库实例,通过区分auto_increment的起始值和步长来生成奇偶数的ID。如下:

优点

  • 简单。充分借助数据库的自增ID机制,可靠性高,生成有序的ID。

缺点

  • ID生成依赖数据库单机的读写性能。
  • 依赖数据库,当数据库异常时整个系统不可用。

对于MySQL的性能问题,可以用如下方案解决
在分布式环境中,我们可以部署N台数据库实例,每台设置成不同的初始值,自增步长为机器的台数。每台的初始值分别为1,2,3...N,步长为N。

fbc6dcc77106ac8b083e9d5953a42eab.png

MySQL数据库自增ID多机图

以上方案虽然解决了性能问题,但是也存在很大的局限性:

  • 系统水平扩容困难:系统定义好步长之后,增加机器之后调整步长困难。如果要添加机器怎么办?假设现在只有一台机器发号是1,2,3,4,5(步长是1),这个时候需要扩容机器一台。可以这样做:把第二台机器的初始值设置得比第一台超过很多,比如14(假设在扩容时间之内第一台不可能发到14),同时设置步长为2,那么这台机器下发的号码都是14以后的偶数。然后摘掉第一台,把ID值保留为奇数,比如7,然后修改第一台的步长为2。让它符合我们定义的号段标准,对于这个例子来说就是让第一台以后只能产生奇数。扩容方案看起来复杂吗?貌似还好,现在想象一下如果我们线上有100台机器,这个时候要扩容该怎么做?简直是噩梦。
  • 数据库压力大:每次获取一个ID都必须读写一次数据库。当然对于这种问题,也有相应的解决方案,就是每次获取ID时都批量获取一个区间的号段到内存中,用完之后再来获取。数据库的性能提高了几个量级。

第三方软件生成(Redis)

Redis实现了一个原子操作INCR和INCRBY实现递增的操作。当使用数据库性能不够时,可以采用Redis来代替,同时使用Redis集群来提高吞吐量。可以初始化每台Redis的初始值为1,2,3,4,5,然后步长为5。各个Redis生成的ID为:

优点

  • 不依赖于数据库,灵活方便,且性能优于数据库。
  • 数字ID天然排序,对分页或者需要排序的结果很有帮助。

缺点:

  • 如果系统中没有Redis,还需要引入新的组件,增加系统复杂度。
  • 需要编码和配置的工作量比较大。这个都不是最大的问题。

关于分布式全局唯一ID的生成,各个互联网公司有很多实现方案,比如美团点评的Leaf-snowflake,用zookeeper解决了各个服务器时钟回拨的问题,弱依赖zookeeper。以及Leaf-segment类似上面数据库批量ID获取的方案。

解决时钟问题

因为这种方案依赖时间,如果机器的时钟发生了回拨,那么就会有可能生成重复的ID号,需要解决时钟回退的问题。

2fda2a23f3a206ee373242068d993036.png

image

参见上图整个启动流程图,服务启动时首先检查自己是否写过ZooKeeper leaf_forever节点:

  1. 若写过,则用自身系统时间与leaf_forever/${self}节点记录时间做比较,若小于leaf_forever/${self}时间则认为机器时间发生了大步长回拨,服务启动失败并报警。
  2. 若未写过,证明是新服务节点,直接创建持久节点leaf_forever/${self}并写入自身系统时间,接下来综合对比其余Leaf节点的系统时间来判断自身系统时间是否准确,具体做法是取leaf_temporary下的所有临时节点(所有运行中的Leaf-snowflake节点)的服务IP:Port,然后通过RPC请求得到所有节点的系统时间,计算sum(time)/nodeSize。
  3. 若abs( 系统时间-sum(time)/nodeSize ) < 阈值,认为当前系统时间准确,正常启动服务,同时写临时节点leaf_temporary/${self} 维持租约。
  4. 否则认为本机系统时间发生大步长偏移,启动失败并报警。
  5. 每隔一段时间(3s)上报自身系统时间写入leaf_forever/${self}。

由于强依赖时钟,对时间的要求比较敏感,在机器工作时NTP同步也会造成秒级别的回退,建议可以直接关闭NTP同步。要么在时钟回拨的时候直接不提供服务直接返回ERROR_CODE,等时钟追上即可。或者做一层重试,然后上报报警系统,更或者是发现有时钟回拨之后自动摘除本身节点并报警,如下:

从上线情况来看,在2017年闰秒出现那一次出现过部分机器回拨,由于Leaf-snowflake的策略保证,成功避免了对业务造成的影响。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值