1.大纲要求
2.应知应会
(1)实数指数幂
①指数幂与根式
②实数指数幂及运算法则
am×an=am+n
(am)n=am×n
(ab)m =am×bm
(2)指数函数
①指数函数
y=ax
②指数函数的图像
值域:(0, ∞ )
特殊点:图像过(0,1)点
函数增减性:当a>1为增函数;0
(3)对数
①对数及性质
ab = N 与 b=logaN 的对应关系。
b=logaN
特殊情况:loga1=0;logaa=1;N>0(0和负数没有对数)
②常用对数(底为10)和自然对数(底为e)
log10N记为lgN
logeN记为lnN
③积、商、幂的对数
lg(M×N)=lgM+lgN
lg(M/N)=lgM-lgN
lgMn =nlgM
(4)对数函数
①对数函数
y=logax
②对数函数的性质
◆函数的定义域为(0,+ ∞ ),值域为R;
◆当x=1时,y=0 ;
◆当a>1,函数为增函数;当0
3.历届统考真题
(1)客观题
序号 | 题干 | 参考答案 |
1 | 计算4-1=() A.4 B.3 C.-4 D.1/4 | D |
2 | 右图是指数函数y=ax的图像,则a的取值范围是()。 A.(1,+∞) B.(0,1) C.(-∞,0) D. R | B |
3 | 将32=9写成对数式是() A.log32=9 B. log39=2 C. log23=9 D. log29=3 | B |
4 | 函数y=log3x的图像必过点()。 A. (0,0) B. (0,1) C. (1,0) D. (1,1) | C |
5 | “以a为底x的对数等于y”记作() A. y=logax B. x=logay C. x=logya D. y=logxa | A |
6 | 下列运算中,正确的是() | C |
7 | 函数y=log3x的大致图像为( ) | D |
8 | 若loga2=1,则a的值是( ) | 2 |
(2)主观题
序号 | 题干 | 参考答案 |
1 | 计算81/3×(√2)2-(√13 -1)0+(lg5+lg2) | 原式=2×2 - 1 + lg10 =4 - 1 + 1 =4 |
2 | 计算:log22 + (π-1)0 + 3×3-1 | 原式=1+1+1 =3 |
3 | 求值:1/9 × (-3)2 + 2÷(√5 - 1)0 - log39 | 原式=(1/9)× 9 +2/1 – log332 =1+2-2log33 =3-2 =1 |
凉山州职业技术学校北2校区