一. 基本内容
- 指数函数和对数函数是高中的九个基本函数中重要的两个。同其他函数一样,我们必须掌握这两个函数的定义,三要素,图象和性质。
- 指数函数是y=常数的x次数方,x在指数的位置,底数为大于0且不等于1的常数。其图象为讲义气的义型,a大于1为一撇,a大于0小于1时为一捺。过定点(0,1),当底数为一对倒数时,其图象关于y轴对称。
- 对数函数是y=以a为底x的对数,底数a大于0且不等于1,真数大于0。图象为躺着的讲义气的义,图象过定点(1,0),当底数为一对倒数时,图象关于x轴对称。
- 不管是指数函数还是对数函数,底数大于1时为增函数,底数大于0小于1时为减函数。
二. 基本题型
- 有关题型有求定义域、值域。求定义域注意三点:1)开偶次根的根号下的式子大于等于0;2)分母不为0;3)真数大于0。
- 过定点问题。
- 比大小问题:1)利用单调性比大小,首先找到相应函数;2)利用媒介法比大小,最常用的媒介为0和1;3)图象法。
- 有关复合函数的题型。关键是将复合函数分解为两至三个基本函数。再对基本函数逐一研究相关性质,比如说单调性和值域问题。
以下内容为自做学案,可供中等及以下基础的同学练习训练。