文本分类训练集 测试集_训练集和测试集的分布不同

47083e0b4128006bbf6c793f8b883d0a.png

目录:

  1. 协变量偏移
  2. 划分训练/验证/测试集
  3. 过拟合与数据不匹配
  4. 总结

现在深度学习之所以发展这么快,有这么好的效果,一个主要原因就是因为现在可以获取海量的数据对神经网络进行训练。但是不是所有人都能获取到自己想要的大量数据,所以就会出现一些问题。。。

假设我们只能收集到8千个真实数据,但是实际需要的可能是10万个数据,那我们就写代码自己生成这10万个数据,但是这里就有一个问题,我们自己生成的数据和实际数据肯定存在一些差异,即数据分布(distribution)不同。

1、协变量偏移(Covariate Shift

我们要先了解一个概念——协变量偏移,协变量是指模型的输入变量(自变量),协变量偏移指的是训练集和测试集中的输入变量具有不同的数据分布。协变量偏移意味着只有输入分布发生变化,而输入到输出的映射关系保持不变。

协变量偏移是最常见的数据偏移类型,理想情况下测试集与训练集应该有相同的数据分布。然而,在现实中,外界环境中各种因素的变化都可能导致这个假设不成立。所以几乎真实世界的每个数据集都有这个问题。

看下面这张图:

627146dea530dca4c017c93364d6fef1.png

学习函数试图去拟合训练数据,但是在这里,我们可以看到训练集和测试集的分布是不同的,所以使用这个学习函数进行预测肯定会给出错误预测结果。

那么图像数据中的数据分布到底是什么呢?以下是我的个人理解:

  • 各类别比例:比如训练集中30%的车、40%的人和30%的树,而测试集中有10%的车、20%的人和70%的树,那么我们可以猜测训练集中的数据可能来自街景场景,而测试集中的数据可能来自公园场景。因为两者各类别的比例不同,所以数据分布不同。
  • 图像特征:比如训练集是我们在网上收集的非常清晰的猫狗图像,而测试集是我们自己拍的比较模糊的猫狗图像;或者训练集是白色的狗和黄色的猫的图像,而测试集是黄色的狗和白色的猫的图像,那么它们也可以看做数据分布不同。

而我们所说的独立同分布就是要求训练集和测试集中各类别的比例相近,图像特征相近。在训练集上学习到的规律可以直接应用于测试集。

回到最开始的问题,我们收集的8千个真实数据和自动生成的10万个数据的数据分布多多少少会有一些不同(假设两者的特征存在差异,而各类别比例相同),那么我们如何构建训练/验证/测试集呢?

划分训练/验证/测试集

我们可以将两个数据集组合起来,然后随机洗牌。并将结果数据集分割成训练/验证/测试集。假设对训练/验证/测试集采用 96:2:2 的分割,这个过程将是这样的:

51fe24e325ede03f29e7bf752b880fc4.png

通过这种处理,训练/验证/测试集都来自相同的分布,如上图中的颜色所示,这是我们所期望的。 然而此时存在一个问题。

在验证集中,2000张图片中平均只有148张图片来自真实数据集。这意味着,在大多数情况下,我们都在根据生成数据的分布来优化网络模型(2000幅图像中有1852幅),因此这不是一个好的方法。

另一个方法是让验证/测试集来自真实数据集,训练集来自生成数据集。假设像以前一样对训练/验证/测试集使用96:2:2的划分。验证/测试集将各有2000张真实图像数据,剩下的真实数据和全部生成数据都为训练集,如下所示:

dbe898af5690ba73c19a00a5d544ea67.png

使用这种划分方式,我们可以优化网络模型,以便在测试集上的有很好的效果,因为验证集的图像仅来自真实数据集。

然而,训练集现在不同于验证/测试集。这意味着在很大程度上,我们是在生成图像上训练网络模型。因此,优化模型需要花费更多更长的时间。

更重要的是,当训练集和验证集上的损失差别较大时,我们无法判断这是由过拟合还是数据不匹配造成的。

过拟合与数据不匹配

假设训练误差为2%,验证误差为10%。鉴于这两组数据来自不同的分布,这两组数据之间8%的差异中有多少是由于数据不匹配造成的,有多少是由于模型过拟合造成的,我们并不能判断。

让我们修改训练/验证/测试集划分。取出训练集的一小部分,称之为“桥集”。桥集将不用于训练网络模型。它是一个独立的集合,划分方式如下所示:

95dc9d1b81e7b9c965ce2967f846ca1c.png

过拟合

通过这种划分方式,假设训练误差和验证误差分别为2%和10%,而桥集误差为9%,如下所示:

6f398f95c022ca70393948605ed2e92b.png

因为桥集与训练集来自相同的分布,排除了数据不匹配(数据分布)的影响,它们之间的误差相差为7%,所以有7%的误差来自方差误差(过拟合 )。桥集和验证集有1%的差异,所以有1%的误差来自数据不匹配误差。

训练集和验证集之间8%的误差中有7%是方差误差,有1%是数据不匹配误差。

数据不匹配

现在假设桥集误差为3%,其余的如前所示:

a4508d9b13acf1df8190e2ef446b8f6b.png

根据上面的分析,训练集和桥集的误差相差为1%,所以有1%的误差来自方差误差。桥集和验证集有7%的差异,所以有7%的误差来自数据不匹配误差。

减少方差误差是机器学习中的一项常见任务。例如可以使用各种正则化方法。

对于数据不匹配误差,我们可以想办法收集更多的真实数据,并加入到训练集中参与模型训练,或者尽可能地生成和真实数据非常相似的数据加入到训练集中。

总结

当进行网络模型训练时,理想情况下,训练/验证/测试数据集应该都来自相同的数据分布——即模型在被用户群使用时会遇到的数据分布。

而训练集和测试集有不同的数据分布,说明此时具有协变量偏移。

有时无法收集到足够的真实数据,而其他分布中的类似数据很容易获得,即数据的来源是不同的。在这种情况下,验证/测试集应该都来自真实数据,否则验证集无法反映出测试集的情况,而来自其他分布的数据可以用来构建训练集。训练集中最好也加入一些真实数据,此时要注意可能会存在因为数据分布不匹配而带来的误差。

都能看到这,想必你对人工智能领域很感兴趣,强烈推荐两本(西瓜书和花书)机器学习和深度学习的经典书籍,帮助你系统学习该领域的知识。

公式太多很难啃,这里有西瓜书详细的公式推导解析供你参考。

南瓜书PumpkinBook​datawhalechina.github.io

参考

How (dis)similar are my train and test data?

Covariate Shift – Unearthing hidden problems in Real World Data Science

What to do when your training and testing data come from different distributions

如何理解“训练集测试集都是来自于同一分布”这句话?


如果觉得有用,点个赞吧(ง •̀_•́)ง。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值