# matlab矩阵四分位数,中位数，四分位数

Statistics)，在Distribution(分布分析)这个选项卡中将Skewness(偏度系数)和Kurtosis(峰度系数)两个选项前的方框打上小钩，这样就可以得出偏度系数和峰度系数及其标准误。然后将所得的偏度系数和峰度系数除以其标准误，就可以得出资料在偏度和峰度上按u分布(若为小样本，则为t分布)的检验值，所得到的值若<1.96(P>0.05)，则数据在该方向上为正态分布；反之，所得到的值若>1.96(P<0.05)或>2.58(P<0.01)，则资料在该方向上为偏态分布。即如果资料为正态分布时，Skewness与Kurtosis的值都应等于零，若Skewness值为正时，曲线左偏，Skewness值为负时，曲线右偏。而Kurtosis值为正时，曲线较平坦，Kurtosis值为负时，曲线峰度超出正态分布，即靠中心处的数据过多(当然，这在频数图上一目了然，但频数图不能证明正态性，而偏度和峰度检验则可做到这一点)

1. 若是经对数变换后，可转换成正态分布的资料，可使用几何均数和对数标准差描述。2.

MEDIAN(array)中位数

QUARTILE(array,quart)

1--25%的值

2--50%的值，相当于Median

​3--75%的值

4--最大值，相当于max​

Percentile (array,

p)calculate the pth

percentile

Minimum Value

PERCENTILE(A1:A20,0)QUARTILE(A1:A20,0)

MIN(A1:A20)

1st

QuarterPERCENTILE(A1:A20,0.25)

QUARTILE(A1:A20,1)

MedianPERCENTILE(A1:A20,0.50)QUARTILE(A1:A20,2)MEDIAN(A1:A20)

3rd

Quarter

PERCENTILE(A1:A20,0.75)

QUARTILE(A1:A20,3)​

Maximum

ValuePERCENTILE(A1:A20,1)

QUARTILE(A1:A20,4)

MAX(A1:A20)

Y=

prctile(X,p)returns

percentiles of the values in a data vector or

matrixXfor

the percentagespin

the interval [0,100].

​Y=

prctile(X,p,dim)returns

percentiles along dimensiondim.

​X

= (1:5)'*(2:6)

X =

2 3 4 5 6

4 6 8 10 12

6 9 12 15 18

8 12 16 20 24

10 15 20 25 30

Calculate the 25th, 50th, and 75th percentiles along the columns

of X.

Y = prctile(X,[25 50 75],1)

Y =

3.5000 5.2500 7.0000 8.7500 10.5000

6.0000 9.0000 12.0000 15.0000 18.0000

8.5000 12.7500 17.0000 21.2500 25.5000

The rows

of Y correspond to

the percentiles of columns of X. For

example, the 25th, 50th, and 75th percentiles of the third column

of X with elements

(4, 8, 12, 16, 20) are 7, 12, and 17,

respectively. Y = prctile(X,[25 50

75]) returns the same percentile

matrix.

Y=

quantile(X,p) returns

quantiles of the values in data vector or

matrixXfor

the cumulative probability or

probabilitiespin

the interval [0,1].

Y=

quantile(X,p,dim)returns

quantiles along dimensiondim.

​x

= normrnd(0,1,1,10)

x =

0.5377 1.8339 -2.2588 0.8622 0.3188 -1.3077 -0.4336 0.3426 3.5784 2.7694

Calculate

the quantiles for the cumulative probabilities 0.025, 0.25, 0.5,

0.75, and 0.975.

y = quantile(x,[0.025 0.25 0.50 0.75 0.975])

y =

-2.2588 -0.4336 0.4401 1.8339 3.5784

Quantiles和Percentiles计算方法相似，the

quantile at the value Q is the same as the percentile at the value

P = 100*Q，

== quantile(x,[0.25,0.5,0.75])

​[注]：实际上是matlab与excel对同样的数据算出来的百分位数是不一样的，excel与SPSS得到的结果一致，符合我们对百分位数的理解，但matlab似乎将原始数据的最小最大值分别缩小和扩大了0.5，具体算法没有研究，知道的朋友请指正。​​

excel: QUARTILE(x,1) QUARTILE(x,2)

QUARTILE(x,3)

-丁香园论坛

Excel中quartile函数的使用和案例_知行网

http://www.zhixing123.cn/excel/40367.html

Percentiles of a data set - MATLAB prctile - MathWorks

Benelux

Normality - Handbook of Biological Statistics

http://www.biostathandbook.com/normality.html

06-18 5977

03-05 668
04-25 2691
02-22 1万+
12-17 2913
07-20 9763
03-20 1万+
07-28 2万+
06-03 5万+

• 非常没帮助
• 没帮助
• 一般
• 有帮助
• 非常有帮助