python游戏图像识别_利用python做图像识别

本文介绍了Python在游戏图像识别和验证码处理方面的应用,涉及PIL、pytesser、tesseract等工具的使用,以及OpenCV结合深度学习模型进行图像识别的教程。内容涵盖从基础的图像处理到复杂的深度学习模型在实际问题中的应用。
摘要由CSDN通过智能技术生成

Python验证码识别处理实例(转)

一、准备工作与代码实例

1、PIL、pytesser、tesseract

(1)安装PIL:下载地址:http://www.pythonware.com/products/pil/(CSDN下载)

下载后是一个exe,直接双击安装,它会自动安装到C:\Python27\Lib\site-packa...

文章

developerguy

2016-03-13

986浏览量

深度学习动手入门:GitHub上四个超棒的TensorFlow开源项目

本文来自AI新媒体量子位(QbitAI)

作者简介:akshay pai,数据科学工程师,热爱研究机器学习问题。Source Dexter网站创办人。

TensorFlow是Google的开源深度学习库,你可以使用这个框架以及Python编程语言,构建大量基于机器学习的应用程序。而且还有很多人...

文章

行者武松

2018-02-07

4171浏览量

企业AI架构师佟达:无处不在的Python

5 月 13 日,由 ThoughtWorks 主办的 2017 技术雷法峰会在北京召开。

正如官方宣传提到的:“ThoughtWorks 技术雷达” 并非一个客观的行业分析或者报告,也无意成为一份权威的官方文档。由各行各业诸多顶尖技术专家组成的 ThoughtWorks 全球技术委员会(TAB)...

文章

玄学酱

2017-08-02

1365浏览量

OpenCV+深度学习预训练模型,简单搞定图像识别 | 教程

本文来自AI新媒体量子位(QbitAI)

OpenCV是一个2000年发布的开源计算机视觉库,有进行物体识别、图像分割、人脸识别、动作识别等多种功能,可以在Linux、Windows、Android、Mac OS等操作系统上运行,以轻量级、高效著称,且提供多种语言接口。

而OpenCV最近一...

文章

行者武松

2018-01-08

5848浏览量

机器人系统设计与制作:Python语言实现导读

前 言

本书包含12章,主要介绍如何从零开始构建自主移动的机器人,并使用Python进行编程。本书所提到的机器人是用于家庭、宾馆、餐厅的服务机器人,我们将按照顺序介绍如何一步一步构建它。书中从机器人的基本概念开始,然后过渡到机器人三维建模和仿真,在成功进行机器人仿真之后,将介绍构建机器人原型所需要...

文章

华章计算机

2017-05-02

3093浏览量

视觉Ai第二天学习心得

人工智能这个词可谓是耳熟能详,近几年人工智能热潮再次席卷而来,引起轰动的要数google的AlphaGo,相继打败了围棋界的韩国选手李世石以及世界冠军柯洁,见证了人工智能发展的里程碑式的变革,人工智能再度引起了众人的关注。人工智能当然不止会下棋这么简单,其实在20年前,智能家居的开发就有不少团队在...

文章

马林利

2020-09-25

125浏览量

利用深度学习开发老板探测器,再也不担心刷着微博一回头突然看到老板了

如果上班的时候

图像轮廓识别是一种常见的图像处理技术,可以用于物体检测、边缘检测、模式识别等领域。Python中的OpenCV库提供了丰富的图像处理功能,包括图像轮廓识别功能。下面介绍如何使用Python Opencv实现图像轮廓识别功能。 1. 导入库 首先需要导入OpenCV库。可以使用以下代码导入: ```python import cv2 import numpy as np ``` 2. 读取图像并转化为灰度图像 使用cv2.imread()函数读取图像,并使用cv2.cvtColor()函数将图像转化为灰度图像。代码如下: ```python img = cv2.imread("image.jpg") gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ``` 3. 进行图像处理 在进行轮廓识别前,需要对图像进行一些处理,如图像平滑、二值化等。这里使用cv2.GaussianBlur()函数进行高斯平滑处理,并使用cv2.threshold()函数进行二值化处理。代码如下: ```python blur = cv2.GaussianBlur(gray, (5, 5), 0) ret, binary = cv2.threshold(blur, 127, 255, cv2.THRESH_BINARY) ``` 4. 进行轮廓识别 使用cv2.findContours()函数进行轮廓识别。该函数返回一个轮廓列表和一个层次结构。代码如下: ```python contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) ``` 5. 绘制轮廓 使用cv2.drawContours()函数绘制轮廓。代码如下: ```python cv2.drawContours(img, contours, -1, (0, 255, 0), 2) ``` 6. 显示图像 使用cv2.imshow()函数显示图像,并使用cv2.waitKey()函数等待按键。代码如下: ```python cv2.imshow("image", img) cv2.waitKey(0) cv2.destroyAllWindows() ``` 完整代码如下: ```python import cv2 import numpy as np img = cv2.imread("image.jpg") gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) blur = cv2.GaussianBlur(gray, (5, 5), 0) ret, binary = cv2.threshold(blur, 127, 255, cv2.THRESH_BINARY) contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) cv2.drawContours(img, contours, -1, (0, 255, 0), 2) cv2.imshow("image", img) cv2.waitKey(0) cv2.destroyAllWindows() ``` 运行代码后,将显示原图像和识别出的轮廓。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值