使用函数输出一个整数的逆序数_大数数学入门-Part06-序数

7f416c5d3ca1db20d34465b038ff4559.png

序数

为了能够使快速增长层级表达增长更快的函数,我们想要将自然数集加以拓展,同时能够满足序关系这一性质。我们将这个集合称为序数。为了对于自然数集加以拓展,我们需要明白自然数是什么。

自然数可以由集合来定义:

第一条定义了

,第二条定义了后继,第三条定义了序关系。这样定义的自然数是满足皮亚诺公理的。这里的序关系被定义为子集关系。

例如:

将数字表达成集合可以推出许多有趣的结论,因为集合是可以包含无限多个元素的。如果定义:

那么任何自然数都是它的子集。这也就是说,对于任意的自然数

。但是,很容易看出
并不是任意一个自然数的后继。如果一个序数不是任何序数的后继也不是0,那么它被称为
极限序数

我们看看能不能继续再向上拓展:

定义

,那么
。 定义
,那么
。 我们发现,“后继”这一操作依然是可以进行的。

那么我们可以不断地使用后继,得到

。然后再次仿照
的定义,定义:

那么

就比任意的
大。

序数的比较和运算

在继续探索更大的序数之前,需要对于内容做一些详细的阐释。

首先,序数不是基数。序数和基数在正整数的范围内是一致的,但是超越正整数的范围就出现了不一致之处了。基数是描述集合的“大小”的数。如果

,需要存在一个从
的满射,即存在一个从
的函数
,且
。而对于序数而言,序关系是子集关系。

举一个例子:

,因为

,因为
,但是
,所以

但是:

,因为存在
的一一对应关系:

然后,我们需要定义序数之间的加法。

自然数的加法可以由后继定义:

  1. ,其中
    是后继运算。

然而,这两条规则无法满足

中的
是极限序数的情况。例如,这两条规则无法计算
之类的值。

我们可以尝试着扩展加法的定义。对于同样的

而言,如果
,那么应该有
。令
中的任何一个元素,总是有
,因此:
。从而,
至少要大于等于
的上确界。

给定若干个序数

,它们的上确界就是它们的并集
,因为所有的
都确实是它的子集。所以我们不妨定义:
  1. 如果
    是极限序数,那么

可以发现,这个定义是满足要求的。

来举一个例子:

可以看出,在序数中的加法是不满足交换律的:

,然而这并不会产生很大的障碍。

同样的,我们可以定义序数之间的乘法和指数运算,只需要额外增加一条处理极限序数的情况。

基本序列和快速增长层级

对于极限序数而言,我们可以将它表示成一个序数列,它们的上确界就是这个序数。

例如:

可以给

定义这样的数列
,有
,那么:

这样定义的一串序数列就是极限序数的一个基本序列

需要注意的是,一个极限序数的基本序列可以有不同的取法,比如定义

也是可以的,但是为了保证不出现歧义,极限序数都有公认的基本序列。

在快速增长层级中,已经定义了下标是

和后继数列的情况,现在我们来用基本数列这一概念来定义下标是极限序数的情况:

,如果
是极限序数。

可以显然的看出,对于任何的

增长得都不比
慢。

采用

的标准定义,在前一篇中对角化的
就可以表示成
。这是快速增长层级中第一个超越了自然数增长级的函数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值