排序:
默认
按更新时间
按访问量

faster rcnn调参 总结(吐血)

  1. 假设一次训练有10个epoch,可能会出现以下情况:训练好一次模型去测试,测试的准确率为0.92。又去训练一次模型(不是在之前训练模型的基础上,而是单独进行一次训练),模型训练好去测试,测试准确率为0.93或者0.89。如果我改变一个模型的参数,比如调小dropout的值,可能训练出来...

2018-11-05 23:27:27

阅读数:9

评论数:0

faster_rcnn test 浮点运算量

以上我的同学xzzppp(博客http://blog.csdn.net/xzzppp/article/details/53317011)总结的faster-RCNN 测试计算量总结,仅仅截取表格一部分,下载见点击打开链接 卷积层浮点运算计算量公式(参考21天实战caffe)是: Caculat...

2018-11-05 23:25:52

阅读数:5

评论数:0

基于ZF网络的Faster RCNN网络结构详解(非常详细版)

我还只是小白,又很多不会的,还希望能得到大神的指导!!!!感激不尽  附录:  proposal_layer实现过程: http://blog.csdn.net/seven_year_promise/article/details/60874922  和http://download.csdn....

2018-10-31 11:18:51

阅读数:14

评论数:0

8.Python 学习系列--------Python 基本语法

三个内置必须要记住,Python stype help dir 目录 1 python一切皆为对象,因为现实 2.数据类型的组成 3。常用基本数据类型. 4.数据类型的可变和不可变 5.变量之赋值一切皆为引用,动态性与动态类型之为何不再动态 字符串认知与应用 认知1.字符串概念 ...

2018-10-18 23:52:38

阅读数:5

评论数:0

Caffe版Faster R-CNN可视化——网络模型,图像特征,Loss图,PR曲线

可视化网络模型   Caffe目前有两种常用的可视化模型方式:  * 使用Netscope在线可视化  * Caffe代码包内置的draw_net.py文件可以可视化网络模型 Netscope   Netscope能可视化神经网络体系结构(或技术上说,Netscope能可视化任何有向无环图)。目前...

2018-10-17 13:32:42

阅读数:19

评论数:0

Faster RCNN代码理解详细(Python)

最近开始学习深度学习,看了下Faster RCNN的代码,在学习的过程中也查阅了很多其他人写的博客,得到了很大的帮助,所以也打算把自己一些粗浅的理解记录下来: 一是记录下自己的菜鸟学习之路,方便自己过后查阅; 二来可以回馈网络。目前编程能力有限,且是第一次写博客,中间可能会有一些错误。 目录...

2018-10-16 15:39:42

阅读数:19

评论数:0

py-faster-rcnn demo.py解析

#程序功能:调用caffemodel,画出检测到的人脸并显示 #用来指定用什么解释器运行脚本,以及解释器所在位置,这样就可以直接执行脚本 #!/usr/bin/env python # ---------------------------------------------------...

2018-10-16 15:14:57

阅读数:10

评论数:0

ZF

name: "ZF" layer { name: 'input-data' type: 'Python' top: 'data' top: 'im_info' top: 'gt_boxes' python_param { mod...

2018-10-16 10:17:54

阅读数:9

评论数:0

(1)机器学习-----回归

最大似然估计:现在已经拿到了很多个样本(你的数据集中所有因变量),这些样本值已经实现,最大似然估计就是去找到那个(组)参数估计值,使得前面已经实现的样本值发生概率最大。因为你手头上的样本已经实现了,其发生概率最大才符合逻辑。这时是求样本所有观测的联合概率最大化,是个连乘积,只要取对数,就变成了线性...

2018-10-15 21:37:13

阅读数:15

评论数:0

使用自己的数据训练 Faster R-CNN 的 ResNet-50 模型

  上次使用 Faster R-CNN 训练了一个 VGG16 的网络,为了再提升识别的准确率,利用 ResNet 网络在同样的数据上面训练了多一次。 https://blog.csdn.net/weixin_39679367/article/details/80930830 https:/...

2018-09-27 19:23:15

阅读数:82

评论数:0

在 Ubuntu 下创建虚拟独立 Python 环境

虚拟环境是程序执行时的独立执行环境,在同一台服务器中可以创建不同的虚拟环境供不同的系统使用,项目之间的运行环境保持独立性而相互不受影响。例如项目可以在基于 Python2.7 的环境中运行,而项目 B 可以在基于Python3.x 的环境中运行。在 Python 中通过 virtualenv 工具...

2018-09-26 20:30:33

阅读数:20

评论数:0

使用自己的数据训练 Faster R-CNN 的 VGG-16 模型

版权声明:Copyright (c) strongnine https://blog.csdn.net/weixin_39679367/article/details/80930830 最近在学习 Faster R-CNN 模型,为了了解其中网络的结构,利用 PascalVOC 数据集,来扩展网...

2018-09-26 17:59:45

阅读数:41

评论数:0

Caffe版Faster R-CNN可视化——网络模型,图像特征,Loss图,PR曲线

可视化网络模型   Caffe目前有两种常用的可视化模型方式: 使用Netscope在线可视化 Caffe代码包内置的draw_net.py文件可以可视化网络模型 Netscope   Netscope能可视化神经网络体系结构(或技术上说,Netscope能可视化任何有向无环图)。目前Ne...

2018-09-26 10:35:49

阅读数:36

评论数:0

3.机器学习之【错误率、精度、查准率、查全率和F1度量】详细介绍

目录: (1)错误率(Error rate)和精度(Accuracy) (2)查准率(准确率-Precision)、查全率(召回率-Recall) (3)P-R曲线、平衡点和F1衡量   2018年4月11日16:00左右,面试了腾讯的《基础研究》实习生职位,面试地点在广州。我投递的岗位...

2018-09-08 20:23:59

阅读数:104

评论数:0

2.机器学习之 为什么要用交叉验证

本文结构: 什么是交叉验证法? 为什么用交叉验证法? 主要有哪些方法?优缺点? 各方法应用举例? 什么是交叉验证法? 它的基本思想就是将原始数据(dataset)进行分组,一部分做为训练集来训练模型,另一部分做为测试集来评价模型。 为什么用交叉验证法? 交叉验证用于评估模型的预测性能...

2018-09-08 20:09:58

阅读数:59

评论数:0

1.机器学习之梯度下降和回归算法

转载自网络 知识点,利用多元微分推导梯度下降算法 关于学习率的设置,大小会对结果产生什么样子的影响 凸优化 只有全局最优解,任何 一个最优解就是全局 最优解 知识点: 线性回归概念 梯度下降算法         l  批量梯度下降算法         l  随机梯度下降算法     ...

2018-09-08 11:50:29

阅读数:27

评论数:0

网络结构图

https://cbovar.github.io/ConvNetDraw/  

2018-09-06 20:22:34

阅读数:37

评论数:0

保存faster-rcnn的检测结果

为了分析faster-Rcnn的测试结果,需要先将测试结果保存起来,效果如下: (图片名 类别 bbox坐标) 代码如下: #!/usr/bin/env python # -------------------------------------------------------...

2018-09-04 17:48:45

阅读数:29

评论数:0

caffe 可视化网络及resnet50结构

sudo python /home/lu/caffe/python/draw_net.py /home/lu/caffe/examples/mnist/lenet_train_test.prototxt /home/lu/caffe/lenet.png --rankdir=BT   http:...

2018-09-04 14:10:36

阅读数:49

评论数:0

Faster RCNN demo解析

#程序功能:调用caffemodel,画出检测到的人脸并显示 #用来指定用什么解释器运行脚本,以及解释器所在位置,这样就可以直接执行脚本 #!/usr/bin/env python # ---------------------------------------------------...

2018-09-04 12:57:39

阅读数:35

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭