自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2)
  • 资源 (21)
  • 收藏
  • 关注

翻译 APDL实现ANSYS的结果输出

APDL实现ANSYS的结果输出1 概述ANSYS作为通用有限元仿真计算软件应用非常普遍,其强大的参数化功能更是使得ANSYS的使用方便很多。在计算过程中,通常需要对计算结果进行统计,ANSYS计算的模型大多时候节点单元数目很多,结果数据也很多,因此在GUI界面的查询操作不太方便,工作量太大,而且结果不好记录。而且很多时候需要借助第三方软件比如MATLAB等数据处理软件对结果进行处理,此情...

2018-12-19 11:37:59 5581 1

原创 深度学习圣经 里面关于超参数和验证集这一章节

  在NG的ML课程中和西瓜书中都有提到:最佳的数据分类情况是把数据集分为三部分,分别为:训练集(train set),验证集(validation set)和测试集(test set)。那么,验证集和测试集有什么区别呢? 实际上,两者的主要区别是:验证集用于进一步确定模型中的超参数(例如正则项系数、ANN中隐含层的节点个数等)而测试集只是用于评估模型的精确度(即泛化能力)!   举个例子...

2018-12-04 20:40:11 243

机械振动和噪声.ppt

机械振动和噪声,机械振动和噪声机械振动和噪声

2019-10-18

CAE分析在客车盘式制动器NVH领域的应用.pdf

GB 1495-2002 汽车加速行驶车外噪声限值及测量方法 CAE

2019-10-18

WindowsDefenderRemoveScript.rar

方案二:【不可恢复】用脚本完全卸载Windows Defender 如果你想完全卸载Windows Defender,不留任何其相关服务,以免以后和其他软件造成冲突,你可以使用以下方法。但是注意,此方法不可逆,如果使用了,Windows Defender就不能再恢复或重新激活。 1. 下载移除Windows Defender的专用脚本 WindowsDefenderRemoveScript.zip 2. 下载后解压 并 右键单击“Uninstall.cmd”后,点击“以管理员权限运行

2019-07-14

faster_rcnn test 浮点运算量

RCNN, Fast RCNN, Faster RCNN这一系列目标检测算法训练的指导

2018-11-05

faster rcnn demo保存坐标

可以保存demo的坐标,中间修改的位置有详细的说明,参照着改动,应该可以实现的

2018-09-04

深度学习原理与TensorFlow实践 +带标签+高清可看

编辑推荐 与市面上已有的TensorFlow书相比,《深度学习原理与TensorFlow实践》的特色在于一是所有案例来自作者团队工作中的亲身实践,所选案例均是深度学习的经典应用,非常具有代表性;二是结合了深度学习的关键原理,强化读者对深度学习及TensorFlow架构的理解,从而能在知其然、并知其所以然的基础上,更好地运用TensorFlow来开发各类应用。 《深度学习原理与TensorFlow实践》所梳理出来的清晰脉络和关键知识点,必能让读者在内外兼修的基础上,循序渐进地提升功力,在人工智能时代大放异彩。 目录 1 深度学习简介 1 1.1 深度学习介绍 1 1.2 深度学习的趋势 7 1.3 参考资料 10 2 TensorFlow系统介绍 12 2.1 TensorFlow诞生的动机 12 2.2 TensorFlow系统简介 14 2.3 TensorFlow基础概念 16 2.3.1 计算图 16 2.3.2 Session会话 18 2.4 系统架构 19 2.5 源码结构 21 2.5.1 后端执行引擎 22 2.5.2 前端语言接口 24 2.6 小结 24 2.7 参考资料 25 3 Hello TensorFlow 26 3.1 环境准备 26 3.1.1 Mac OS安装 27 3.1.2 Linux GPU服务器安装 28 3.1.3 常用Python库 32 3.2 Titanic题目实战 34 3.2.1 Kaggle平台介绍 34 3.2.2 Titanic题目介绍 35 3.2.3 数据读入及预处理 38 3.2.4 构建计算图 40 3.2.5 构建训练迭代过程 44 3.2.6 执行训练 46 3.2.7 存储和加载模型参数 47 3.2.8 预测测试数据结果 50 3.3 数据挖掘的技巧 51 3.3.1 数据可视化 52 3.3.2 特征工程 54 3.3.3 多种算法模型 57 3.4 TensorBoard可视化 58 3.4.1 记录事件数据 58 3.4.2 启动TensorBorad服务 60 3.5 数据读取 62 3.5.1 数据文件格式 63 3.5.2 TFRecord 63 3.6 SkFlow、TFLearn与TF-Slim 67 3.7 小结 69 3.8 参考资料 69 4 CNN“看懂”世界 71 4.1 图像识别的难题 72 4.2 CNNs的基本原理 74 4.2.1 卷积的数学意义 75 4.2.2 卷积滤波 77 4.2.3 CNNs中的卷积层 81 4.2.4 池化(Pooling) 83 4.2.5 ReLU 84 4.2.6 多层卷积 86 4.2.7 Dropout 86 4.3 经典CNN模型 87 4.3.1 AlexNet 88 4.3.2 VGGNets 95 4.3.3 GoogLeNet & Inception 98 4.3.4 ResNets 106 4.4 图像风格转换 109 4.4.1 量化的风格 109 4.4.2 风格的滤镜 116 4.5 小结 120 4.6 参考资料 121 5 RNN“能说会道” 123 5.1 文本理解和文本生成问题 124 5.2 标准RNN模型 128 5.2.1 RNN模型介绍 128 5.2.2 BPTT算法 130 5.2.3 灵活的RNN结构 132 5.2.4 TensorFlow实现正弦序列预测 135 5.3 LSTM模型 138 5.3.1 长期依赖的难题 138 5.3.2 LSTM基本原理 139 5.3.3 TensorFlow构建LSTM模型 142 5.4 更多RNN的变体 144 5.5 语言模型 146 5.5.1 NGram语言模型 146 5.5.2 神经网络语言模型 148 5.5.3 循环神经网络语言模型 150 5.5.4 语言模型也能写代码 152 5.5.5 改进方向 163 5.6 对话机器人 164 5.6.1 对话机器人的发展 165 5.6.2 基于seq2seq的对话机器人 169 5.7 小结 181 5.8 参考资料 182 6 CNN LSTM看图说话 183 6.1 CNN LSTM网络模型与图像检测问题 184 6.1.1 OverFeat和Faster R-CNN图像检测算法介绍 185 6.1.2 遮挡目标图像检测方法 187 6.1.3 ReInspect算法实现及模块说明 188 6.1.4 ReInspect算法的实验数据与结论 204 6.2 CNN LSTM网络模型与图像摘要问题 207 6.2.1 图像摘要问题 208 6.2.2 NIC图像摘要生成算法 209 6.2.3 NIC图像摘要生成算法实现说明 214 6.2.4 NIC算法的实验数据与结论 243 6.3 小结 249 6.4 参考资料 250 7 损失函数与优化算法 253 7.1 目标函数优化策略 254 7.1.1 梯度下降算法 254 7.1.2 RMSProp优化算法 256 7.1.3 Adam优化算法 257 7.1.4 目标函数优化算法小结 258 7.2 类别采样(Candidate Sampling)损失函数 259 7.2.1 softmax类别采样损失函数 261 7.2.2 噪声对比估计类别采样损失函数 281 7.2.3 负样本估计类别采样损失函数 286 7.2.4 类别采样logistic损失函数 286 7.3 小结 287 7.4 参考资料 288 结语 289 内容介绍 本书主要介绍了深度学习的基础原理和TensorFlow系统基本使用方法。TensorFlow是目前机器学习、深度学习领域*秀的计算系统之一,本书结合实例介绍了使用TensorFlow开发机器学习应用的详细方法和步骤。同时,本书着重讲解了用于图像识别的卷积神经网络和用于自然语言处理的循环神经网络的理论知识及其TensorFlow实现方法,并结合实际场景和例子描述了深度学习技术的应用范围与效果。本书非常适合对机器学习、深度学习感兴趣的读者,或是对深度学习理论有所了解,希望尝试更多工程实践的读者,抑或是对工程产品有较多经验,希望学习深度学习理论的读者。

2018-06-10

利用Python进行数据分析

“学习pandas和matplotlib的很好的专业入门材料。” “书如其名,内容充实、实用,例子有趣吸引人。如果你想利用Python进行数据分析的话,这本书很合适。” 了解Python在信息处理、管理和检索方面的强大功能 学会如何利用Python及其衍生工具处理、分析数据 详尽探究三个真实Python数据分析案例,将理论付诸实践

2018-06-05

TensorFlow基于CIFAR10数据集的卷积神经网络CNN实现

这是基于 CIFAR10 数据集的 CNN 在 TensorFlow 上的实现,与 上一个 相比增加了 TensorBoard 的实现,可以在浏览器中查看可视化结果。tensorboard 目录存放着用于可视化的日志文件。

2018-06-05

license_R2012b_R2010b破解证书+安装过程

matlab 破解文件,直接安装就能成功,可以多试试,注册号网上有

2018-06-04

机器学习算法及指南书籍配套代码

机器学习算法及指南书籍配套代码,网上有PDF,这就不一一赘述了,需要的话可以先找这本书的PDF,然后配套代码看

2018-05-28

神经网络与深度学习

内容为时下最火热的神经网络和深度学习,出自大牛Michael Nielsen之手。文章理论坚实,公式推导逻辑严谨,思路清晰,绝对是广大深度学习爱好者的入坑神器。

2018-05-07

cs231斯坦福大学计算机视觉讲义

cs231斯坦福大学计算机视觉讲义,详细的视频在B站和youtube上。李飞飞的讲义

2018-04-16

Linux命令行与shell脚本编程大全.第3版(超清版)pdf带书签

这是一本关于Linux 命令行与shell 脚本编程的全方位教程,主要包括四大部分:Linux 命令行,shell脚本编程基础,高级shell 脚本编程,如何创建实用的shell 脚本。本书针对Linux 系统的最新特性进行了全面更新,不仅涵盖了详尽的动手教程和现实世界中的实用信息,还提供了与所学内容相关的参考信息和背景资料。通过本书的学习,你将轻松写出自己的shell 脚本。 本书适合Linux 程序设计人员阅读。

2018-03-06

Visual Assist X_2258_Cracked

Visual Assist X_2258_Cracked 亲测可用,没有解压密码。有问题私信我

2018-03-06

matlab剩余60天激活证书

主要用于已经激活的,但是显示剩余时间还有60天的matlab,具体激活方法在readme里!

2018-03-03

区块链详细讲解

里面全面地介绍了区块链的基础知识与概念,剖析了区块链的架构、底层实现细节以及加密技术,并配合行业应用案例,常见问题等,全面解读大热的区块链技术实现与应用。

2018-03-01

GitHub上最受欢迎的57个深度学习开源项目

GitHub上最受欢迎的57个深度学习开源项目,搜集版本的

2018-02-28

Tensorflow项目实战视频课程-文本分类

Tensorflow项目实战视频课程-文本分类,录制的视频教程

2018-02-28

大数据-深度学习项目实战-关键点定位视频教程

大数据-深度学习项目实战-关键点定位视频教程,通过实战讲解

2018-02-28

深度学习入门视频课程(下篇-2017-11-06更新完毕)

深度学习入门视频课程,主要是针对深度学习的原理录制的课程。

2018-02-28

mnist训练与测试自己手写数字

mnist是一个手写数字库,由DL大牛Yan LeCun进行维护。mnist最初用于支票上的手写数字识别, 现在成了DL的入门练习库。征对mnist识别的专门模型是Lenet,算是最早的cnn模型了。

2017-12-21

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除