点击蓝字关注我们
文章发表于JIM期刊,链接:
https://link.springer.com/article/10.1007/s10845-015-1164-z
摘要
蛙跳算法是一种相对较新的元启发式算法,本文在分析传统混合蛙跳算法弱点的基础上,提出了一种改进的混合蛙跳算法(MS-SFLA)以解决数值函数优化问题。首先,本文采用了一种新型的基于混沌对立学习的种群初始化策略以加速全局收敛过程;其次,本文引入一种自适应非线性惯性权值以保持全局搜索和局部勘探能力之间的平衡;最后,本文还针对局部勘探过程设计了一种基于高斯变异的扰动算子以帮助适应度值最高的个体跳出局部最优点。为了测试MS-SFLA的效率,本文选取了23个广为人知的无约束的数值函数优化问题和25个CEC2005测试集中的标杆问题作为测试函数。结果表明MS-SFLA在几乎所有问题上都比其他方法拥有更快的收敛速度和更好的搜索能力。
文章导读
在工程实践中优化问题的搜索空间大多是大规模和多维度的,这些问题无法用解析法求解,因此必须采用数值算法求解。另外,在大多数情况下全局优化问题是不可微分的,因此无法采用基于梯度的方法寻求全局最优解。鉴于此,人们提出了许多基于种群启发式算法以应对日益复杂的优化问题,这些算法可以分为两类:进化算法(GA,DE)和群智能算法(PSO,ACO,ABC,GSA,SFLA)。
SFLA的灵感来源于在池塘中觅食的青蛙的模因进化,其中的局部勘探过程指的是利用先前解决方案的知识寻找更好的解决方案,全局搜索过程指的是在全局范围内寻找最优解。然而,传统的SFLA擅长全局搜索而不擅长局部勘探,当面临复杂的多峰问题时容易陷入局部最优解,收敛速度也比较慢。
本文提出的MS-SFLA应用了3项改进措施:①传统SLFA采用随机初始化策略,而作者采用基于混沌对立学习的种群初始化策略,这一策略基本上能够提升种群平均适应度值并避免算法过早收敛。②传统SFLA中步长更新公式的权重通常设置为定值、随机值或随时间线性减小的值(较大的权重有助于全局搜索、较小的权重有助于局部勘探),而作者提出一种自适应非线性惯性权重策略,使惯性权重随适应度和迭代次数自适应、非线性地降低以平衡全局搜索和局部勘探能力。③传统SFLA不对种群内适应度最高的个体做处理,而作者提出一种基于高斯变异的摄动算子策略以帮助种群内最优解跳出局部最优点。算法流程图如下所示。
图:MS-SFLA算法流程图
原文信息
Abstract
The shuffled frog-leaping algorithm (SFLA) is a relatively new meta-heuristic optimization algorithm that can be applied to a wide range of problems. After analyzing the weakness of traditional SFLA, this paper presents an enhanced shuffled frog-leaping algorithm (MS-SFLA) for solving numerical function optimization problems. As the first extension, a new population initialization scheme based on chaotic opposition-based learning is employed to speed up the global convergence. In addition, to maintain efficiently the balance between exploration and exploitation, an adaptive nonlinear inertia weight is introduced into the SFLA algorithm. Further, a perturbation operator strategy based on Gaussian mutation is designed for local evolutionary, so as to help the best frog to jump out of any possible local optima and/or to refine its accuracy. In order to illustrate the efficiency of the proposed method (MS-SFLA), 23 well-known numerical function optimization problems and 25 benchmark functions of CEC2005 are selected as testing functions. The experimental results show that the enhanced SFLA has a faster convergence speed and better search ability than other relevant methods for almost all functions.
Keywords
Shuffled frog-leaping algorithm
Optimization · Opposition-based learning
Adaptivenonlinear inertia weight
Perturbation operator strategy
Gaussian mutation
Cite this article as:
Liu C , Niu P , Li G , et al. Enhanced shuffled frog-leaping algorithm for solving numerical function optimization problems[J]. Journal of Intelligent Manufacturing, 2018, 29: 1133–1153.
/本期编辑/
邓植云
武汉理工大学 本科在读
机械工程
/本期编辑/
胡勍
上海交通大学 硕士在读
研究方向:机械臂抓取策略,机器视觉
扫码关注我们
JIM期刊公众号
聚焦智能制造;传播学术观点;促进合作交流
左边点击“阅读原文”,跳转至原文链接
右边给我一朵小花花