python numpy array最大长度_python 中 numpy array 中的维度

本文介绍了Python numpy库中创建的数组的shape属性,用于表示数组的维度。通过实例展示了二维和三维数组的shape属性用法,解释了shape[0]、shape[1]等分别表示的维数含义。同时提到了len()、count()、size()和shape()函数在处理numpy数组时的不同作用。
摘要由CSDN通过智能技术生成

简介

numpy 创建的数组都有一个shape属性,它是一个元组,返回各个维度的维数。有时候我们可能需要知道某一维的特定维数。

二维情况

>>> import numpy as np

>>> y = np.array([[1,2,3],[4,5,6]])

>>> print(y)

[[1 2 3]

[4 5 6]]

>>> print(y.shape)

(2, 3)

>>> print(y.shape[0])

2

>>> print(y.shape[1])

3

可以看到y是一个两行三列的二维数组,y.shape[0]代表行数,y.shape[1]代表列数。

三维情况

>>> x = np.array([[[1,2,3],[4,5,6]],[[7,8,9],[0,1,2]],[[3,4,5],[6,7,8]]])

>>>> print(x)

[[[1 2 3]

[4 5 6]]

[[7 8 9]

[0 1 2]]

[[3 4 5]

[6 7 8]]]

>>> print(x.shape)

(3, 2, 3)

>>> print(x.shape[0])

3

>>> print(x.shape[1])

2

>>> print(x.shape[2])

3

可以看到x是一个包含了3个两行三列的二维数组的三维数组,x.shape[0]代表包含二维数组的个数,x.shape[1]表示二维数组的行数,x.shape[2]表示二维数组的列数。

总结

可以看到,shape[0]表示最外围的数组的维数,shape[1]表示次外围的数组的维数,数字不断增大,维数由外到内。

len():返回对象的长度,注意不是length()函数

len([1,2,3]),返回值为3

len([[1,2,3],[3,4,5]]),返回值为2

count():计算包含对象个数

[1,1,1,2].count(1),返回值为3

‘asddf’.count(‘d’),返回值为2

size()和shape () 是numpy模块中才有的函数

size():计算数组和矩阵所有数据的个数

a = np.array([[1,2,3],[4,5,6]])

np.size(a),返回值为 6

np.size(a,1),返回值为 3

shape ():得到矩阵每维的大小

np. shape (a),返回值为 (2,3)

另外要注意的是,shape和size既可以作为函数,也可以作为ndarray的属性

a.size,返回值为 6,

a.shape,返回值为 (2,3)

https://blog.csdn.net/songyunli1111/article/details/78079904

https://blog.csdn.net/liuweiyuxiang/article/details/79384435

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值