拉格朗日插值matlab_数值计算方法 第四章 多项式插值(1)

写在章前:(逐渐失去耐心,手写和截图越来越多哈哈哈)

生产实践中常常出现这样的问题:给出一批离散样点,要求作出一条通过这些点的光滑曲线,以便满足设计要求或进行加工。反映在数学上,即已知函数在一些点上的值,寻求它的分析表达式。因为由函数的表格形式不能直接得出表中未列点处的函数值,也不便于研究函数的的性质。此外,有些函数虽然有表达式,但因式子复杂,不易计算其值和进行理论分析,也需要构造一个简单函数来近似它。解决这种问题的方法有两种:

①插值法。给出函数

的一些样点值,选定一个便于计算的函数形式,如多项式,分式线性函数和三角多项式等,要求它通过已知样点,由此确定函数
作为
的近似。

②曲线拟合法。在选定近似函数形式后,不要求近似函数过已知样点,只要求在某种意义下它在这些点上的总偏差最小。

插值分为代数(多项式)插值,有理插值,三角插值等。本章主要讨论构代数插值的几种常用方法及其误差。原因是,多项式函数非常简单,其函数值的计算只需有限次数的加(减)法和乘法就可以完成。而且多项式函数是无穷次可微,其导数和原函数仍是多项式函数等等。

一、多项式插值基础

1、插值的定义(了解节点,插值函数,被插值函数,插值区间,插值条件)

bb0ed9a31dfdfde053417f41ad948faa.png

2、多项式插值的存在唯一性

83b40b757ef4a379b8e889f19eea1418.png

证明

次多项式有
个待定系数,由插值条件式恰好给出
个方程。代入点处的函数值,得到方程组
,
为范德蒙行列式,在节点互不相同的情况下,由克莱姆法则,此时的插值多项式系数是存在唯一的。

注意:

①若

本身为多项式,其插值函数为本身。

②若不将多项式次数限制为

,则插值多项式不唯一。因为插值函数加上
都满足条件。

3、插值多项式的误差估计

插值余项:插值多项式与被插函数之间的差

称为截断误差。
定理:假定
在区间
次连续可导,
是过
的n次插值多项式,且
,则对
上任意点
,插值余项为

推导:构造辅助函数

内至少有一个零点,(不断用罗尔定理往高阶上搞)

设为

,即

~

从此定理可以看到,插值误差与节点和点 x 之间的距离有关,节点距离 x 越近,一般的插值误差越小。特别地,当被差值函数

自身就是次数不超过
次的多项式时,则有

通过解方程组来确定插值多项式,计算量较大。下面介绍几种常用的确定插值多项式的方法。

二、拉格朗日插值多项式

1、插值问题

因为比较熟悉就不多说了。

注:当插值节点增加时,拉氏基函数需要重新计算,

较大时,计算量非常大,故此法常用于理论分析。

2、反插值问题

一种思想。当已知某一单调连续函数

在一些采样点的函数值,而需要近似计算哪一点处的函数值为一已知值
时,可采用反插值法即利用已知数据对
的反函数
进行插值近似,然后由该插值多项式计算
的近似值。

三、牛顿插值多项式

1、基础知识介绍

一阶差商:设有函数

为一系列互不相等的点,
称为
关于点
的一阶差商(也称均差),记为

二阶差商:一阶差商的差商称为

关于点
的二阶差商,记为

阶差商:一般的,称
关于点
阶差商

零阶差商:

时称
关于点
零阶差商,记为

差商的性质:

①各阶差商均有线性性,即若

,则对任意正整数
都有

阶商差
可表示成
的线性组合

③各阶差商均具有对称性,即改变节点的位置,差商值不变。由②知。

④若

次多项式,则
也是
次多项式,且
,其中
次多项式。

所以

次多项式。

搜了一个②的证明,可以理解但是一直觉得这个系数应该有某种直观的理解。有想到的朋友可以评论或私信奥。谢谢。

f90d3f40f05d7ae1423c7bb118ca7d89.png

差商的计算:

bbde1063f9dc3fe65f7591dffe1cbf80.png

2、牛顿插值公式

①插值公式:

②一种思维过程:

b73c1129170f7c793abee2f4557f4c65.png
图源知乎@马同学

6c81f52d95c20c085ab47c07ddbf0ef3.png
图源知乎@马同学

观察

的特点,不断重复上述过程,就可以得到牛顿插值法。

先从求满足两个点
的函数
说起:

假设


现在我们增加一个点,
,求满足这三个点的函数

假设


......类推奥

③推导:(先乘系数再相加消掉右端带

项)

394d228d268628a466f1563310619406.png

④误差分析:由唯一性可知只是算法不同,余项相同,即

⑤优缺点分析

缺点:插值曲线在节点处有尖点,不光滑,节点处不可导值多项式

优点: 每增加一个节点, 插值多项式 只增加一项, 即

3、差分

当节点等距时, 即相邻两个节点之差(称为步长) 为常数, Newton插值公式的形式会更简单。因此关于节点间函数的平均变化率 (差商) 可用函数值之差(差分)来表示。

①向前差分

定义:设有等距节点

,步长h为常数,
称相邻两个节点
处的函数值的增量。
为函数
在点
处以h为步长的一阶(向前)差分,记为
, 即

类似地,定义差分的差分为高阶差分:

如二阶(向前)差分为:

一般地,

阶(向前)差分为:

fe6ed1f014f02ccfcf5f88dfc4464c9b.png
向前差分表示的差商表

②向后差分

向后差分:

二阶向后差分:

阶向后差分:

b66ad303cf5e6c2d2d43849470b1178b.png
向后差分表示的差商表

③中心差分

中心差分:

二阶中心差分:

阶中心差分:

a0d1bdbb8003cb26f71b36278550948a.png
中心差分表示的差商表

差分的性质,这里留个坑。

四、分段插值

1、提出背景

在代数插值中,为了提高插值多项式对函数的逼近程度,常常增加节点个数,即提高多项式的次数,这从插值余项的表达式也可以看出,但不能简单地这样认为,原因是:

①插值余项与节点的分布有关;

②余项公式成立的前提条件是

有足够阶连续导数(即函数足够光滑),但随着节点个数的增加,这个条件一般很难成立;

③随着节点个数的增加,

可能会增大

可以证明,当节点无限加密时,插值函数也只能在很小的范围内收敛,在区间中部能较好的逼近函数,在其他部位差异较大,而且越接近端点,逼近效果越差。这一现象称为Runge现象:

插值函数在两个端点处发生剧烈的波动,as it followed

fd7b6e87655ec69f1ffdbb6318f6866f.png

所以通过增加节点来提高逼近程度是不宜的。一般情况下,L插值次数最多不要超过7次。

为提高精度,在加密节点时,可以把节点分成若干段,分段用低次多项式近似函数,这就是分段插值的思想。

2、分段线性插值

用折线近似曲线相当于分段用线性插值,称为分段线性插值。

①定义:设在区间

上给定
个节点
及节点上的函数值
,作一个插值函数
使其满足

(1)

(2) 在每个小区间

上,
是线性函数。称函数
上关于数据
的分段线性插值函数。

②公式:由Lagrange线性插值公式容易写出

的分段表达式

③误差估计

定理: 如果在上二阶连续可微,则分段线性插值函数的余项有以下估计

证明:

emmm差不多了

误差估计还表明,当节点加密时,分段线性插值的误差变小,收敛性有保证。另一方面,在分段线性插值中,每个小区间上的插值函数只依赖与本段的节点值,因而每个节点只影响到节点邻近的一,二计算过程中数据误差基本上不扩大,从而保证了节点数增加时插值过程的稳定性。

3、分段二次插值

分段抛物线弧段近似,称为分段二次插值。

由上面的铺垫不再过多介绍,拉格朗日插值如下:

误差估计:(这个直接把

项放成区间长度)

但分段插值函数仅在

上连续。一般地,在节点处插值函数不可微,这就不能满足有些工程技术问题的光滑要求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值