写在章前:(逐渐失去耐心,手写和截图越来越多哈哈哈)
生产实践中常常出现这样的问题:给出一批离散样点,要求作出一条通过这些点的光滑曲线,以便满足设计要求或进行加工。反映在数学上,即已知函数在一些点上的值,寻求它的分析表达式。因为由函数的表格形式不能直接得出表中未列点处的函数值,也不便于研究函数的的性质。此外,有些函数虽然有表达式,但因式子复杂,不易计算其值和进行理论分析,也需要构造一个简单函数来近似它。解决这种问题的方法有两种:
①插值法。给出函数
②曲线拟合法。在选定近似函数形式后,不要求近似函数过已知样点,只要求在某种意义下它在这些点上的总偏差最小。
插值分为代数(多项式)插值,有理插值,三角插值等。本章主要讨论构代数插值的几种常用方法及其误差。原因是,多项式函数非常简单,其函数值的计算只需有限次数的加(减)法和乘法就可以完成。而且多项式函数是无穷次可微,其导数和原函数仍是多项式函数等等。
一、多项式插值基础
1、插值的定义(了解节点,插值函数,被插值函数,插值区间,插值条件)
2、多项式插值的存在唯一性
证明:
注意:
①若
②若不将多项式次数限制为
3、插值多项式的误差估计
插值余项:插值多项式与被插函数之间的差
定理:假定在区间上次连续可导,是过的n次插值多项式,且,则对上任意点,插值余项为
推导:构造辅助函数
设为
~
从此定理可以看到,插值误差与节点和点 x 之间的距离有关,节点距离 x 越近,一般的插值误差越小。特别地,当被差值函数
通过解方程组来确定插值多项式,计算量较大。下面介绍几种常用的确定插值多项式的方法。
二、拉格朗日插值多项式
1、插值问题
因为比较熟悉就不多说了。
注:当插值节点增加时,拉氏基函数需要重新计算,
2、反插值问题
一种思想。当已知某一单调连续函数
三、牛顿插值多项式
1、基础知识介绍
一阶差商:设有函数
二阶差商:一阶差商的差商称为
零阶差商:当
差商的性质:
①各阶差商均有线性性,即若
②
③各阶差商均具有对称性,即改变节点的位置,差商值不变。由②知。
④若
所以
搜了一个②的证明,可以理解但是一直觉得这个系数应该有某种直观的理解。有想到的朋友可以评论或私信奥。谢谢。
差商的计算:
2、牛顿插值公式
①插值公式:
②一种思维过程:
观察
先从求满足两个点
假设
令
现在我们增加一个点,
假设
令
......类推奥
③推导:(先乘系数再相加消掉右端带
④误差分析:由唯一性可知只是算法不同,余项相同,即
⑤优缺点分析
缺点:插值曲线在节点处有尖点,不光滑,节点处不可导值多项式
优点: 每增加一个节点, 插值多项式 只增加一项, 即
3、差分
当节点等距时, 即相邻两个节点之差(称为步长) 为常数, Newton插值公式的形式会更简单。因此关于节点间函数的平均变化率 (差商) 可用函数值之差(差分)来表示。
①向前差分
定义:设有等距节点
类似地,定义差分的差分为高阶差分:
如二阶(向前)差分为:
一般地,
②向后差分
向后差分:
二阶向后差分:
③中心差分
中心差分:
二阶中心差分:
差分的性质,这里留个坑。
四、分段插值
1、提出背景
在代数插值中,为了提高插值多项式对函数的逼近程度,常常增加节点个数,即提高多项式的次数,这从插值余项的表达式也可以看出,但不能简单地这样认为,原因是:
①插值余项与节点的分布有关;
②余项公式成立的前提条件是
③随着节点个数的增加,
可以证明,当节点无限加密时,插值函数也只能在很小的范围内收敛,在区间中部能较好的逼近函数,在其他部位差异较大,而且越接近端点,逼近效果越差。这一现象称为Runge现象:
插值函数在两个端点处发生剧烈的波动,as it followed
所以通过增加节点来提高逼近程度是不宜的。一般情况下,L插值次数最多不要超过7次。
为提高精度,在加密节点时,可以把节点分成若干段,分段用低次多项式近似函数,这就是分段插值的思想。
2、分段线性插值
用折线近似曲线相当于分段用线性插值,称为分段线性插值。
①定义:设在区间
(1)
(2) 在每个小区间
②公式:由Lagrange线性插值公式容易写出
③误差估计
定理: 如果在上二阶连续可微,则分段线性插值函数的余项有以下估计
证明:
emmm差不多了
误差估计还表明,当节点加密时,分段线性插值的误差变小,收敛性有保证。另一方面,在分段线性插值中,每个小区间上的插值函数只依赖与本段的节点值,因而每个节点只影响到节点邻近的一,二计算过程中数据误差基本上不扩大,从而保证了节点数增加时插值过程的稳定性。
3、分段二次插值
分段抛物线弧段近似,称为分段二次插值。
由上面的铺垫不再过多介绍,拉格朗日插值如下:
误差估计:(这个直接把
但分段插值函数仅在