本研究介绍了一种新蒙特卡洛(MC)算法,(MC)2方法,来预测多组分合金中的稳定相和相分率。来自美国俄亥俄州立大学材料科学与工程系的Maryam Ghazisaeidi教授领导的团队,使用了一种新算法,该算法消除了材料固定尺寸的限制,同时受益于多单元MC的概念,为每个单元分配摩尔比,以控制其在整个系统中的百分比。摩尔比由“杠杆规则”确定,因此系统的总组成是恒定的。与Gibbs集成MC模拟中的原子转移想法相反,此处通过更改一个或多个单元中原子的种类来实现随机原子的转移,作者称之为“翻转”运动。翻转会改变每个单元中的成分,从而改变整个摩尔比集,这等效于一组随机原子在单元之间的转移。虽然局部翻转已经足够,但偶尔进行的全局翻转可以加速收敛,而不会失去通用性。正如作者证明的那样,每个收敛的(MC)2运行都针对模拟的温度和成分标识的混溶区域或相关相界。(MC)2中的算法利用了多个单元的并行计算优势,并提供了识别相关相位和相位边界的独特功能,无需任何可能的相位先验知识。该算法能够预测化学复杂的晶体系统,既可预测多个相,又可预测单个相中不同相的组成和结构。作者认为,这是第一种也是唯一一种可以仅从一个初始成分捕获相界而无需内插中间成分的方法。该文近期发表于npj Computational Materials 5
蒙特卡洛方法_多单元蒙特卡洛方法:合金多相的预测
最新推荐文章于 2024-07-15 21:50:07 发布
研究介绍了一种(MC)2算法,用于预测多组分合金的稳定相和相分率。该算法利用多单元并行计算,通过原子“翻转”运动实现相的预测,无需预先知道可能的相信息,能够准确预测化学复杂晶体系统中的相边界。
摘要由CSDN通过智能技术生成