python策略模式的应用_python实现策略模式

本文介绍了如何在Python中实现策略模式,通过一个电商折扣策略的案例展示了如何定义抽象策略类以及具体策略子类。此外,还探讨了将策略模式中的具体策略用函数替代的简化实现,以及在Python中使用函数作为策略的优势。最后,提到了在某些情况下结合享元模式以优化策略模式的使用。
摘要由CSDN通过智能技术生成

python实现策略模式

1、策略模式概述

策略模式:定义一系列算法,把它们一一封装起来,并且使它们之间可以相互替换。此模式让算法的变化不会影响到使用算法的客户。

电商领域有个使用“策略”模式的经典案例,即根据客户的属性或订单中的商品计算折扣。

假如一个网店制定了下述折扣规则。

有 1000 或以上积分的顾客,每个订单享 5% 折扣。

同一订单中,单个商品的数量达到 20 个或以上,享 10% 折扣。

订单中的不同商品达到 10 个或以上,享 7% 折扣。

简单起见,我们假定一个订单一次只能享用一个折扣。

UML类图如下:

1477786-20190602164520878-1032483170.webp

Promotion 抽象类提供了不同算法的公共接口,fidelityPromo、BulkPromo 和 LargeOrderPromo 三个子类实现具体的“策略”,具体策略由上下文类的客户选择。

在这个示例中,实例化订单(Order 类)之前,系统会以某种方式选择一种促销折扣策略,然后把它传给 Order 构造方法。具体怎么选择策略,不在这个模式的职责范围内。(选择策略可以使用工厂模式。)

2、传统方法实现策略模式:

from abc importABC, abstractmethodfrom collections importnamedtuple

Customer= namedtuple('Customer', 'name fidelity')classLineItem:"""订单中单个商品的数量和单价"""

def __init__(self, product, quantity, price):

self.product=product

self.quantity=quantity

self.price=pricedeftotal(self):return self.price *self.quantityclassOrder:"""订单"""

def __init__(self, customer, cart, promotion=None):

self.customer=customer

self.cart=list(cart)

self.promotion=promotiondeftotal(self):if not hasattr(self, '__total'):

self.__total = sum(item.total() for item inself.cart)return self.__total

defdue(self):if self.promotion isNone:

discount=0else:

discount=self.promotion.discount(self)return self.total() -discountdef __repr__(self):

fmt= '<订单 总价: {:.2f} 实付: {:.2f}>'

returnfmt.format(self.total(), self.due())class Promotion(ABC): #策略:抽象基类

@abstractmethoddefdiscount(self, order):"""返回折扣金额(正值)"""

class FidelityPromo(Promotion): #第一个具体策略

"""为积分为1000或以上的顾客提供5%折扣"""

defdiscount(self, order):return order.total() * 0.05 if order.customer.fidelity >= 1000 else0class BulkItemPromo(Promotion): #第二个具体策略

"""单个商品为20个或以上时提供10%折扣"""

defdiscount(self, order):

discount=0for item inorder.cart:if item.quantity >= 20:

discount+= item.total() * 0.1

returndiscountclass LargeOrderPromo(Promotion): #第三个具体策略

"""订单中的不同商品达到10个或以上时提供7%折扣"""

defdiscount(self, order):

distinct_items= {item.product for item inorder.cart}if len(distinct_items) >= 10:return order.total() * 0.07

return0

joe= Customer('John Doe', 0)

ann= Customer('Ann Smith', 1100)

cart= [LineItem('banana', 4, 0.5),

LineItem('apple', 10, 1.5),

LineItem('watermellon', 5, 5.0)]print('策略一:为积分为1000或以上的顾客提供5%折扣')print(Order(joe, cart, FidelityPromo()))print(Order(ann, cart, FidelityPromo()))

banana_cart= [LineItem('banana', 30, 0.5),

LineItem('apple', 10, 1.5)]print('策略二:单个商品为20个或以上时提供10%折扣')print(Order(joe, banana_cart, BulkItemPromo()))

long_order= [LineItem(str(item_code), 1, 1.0) for item_code in range(10)]print('策略三:订单中的不同商品达到10个或以上时提供7%折扣')print(Order(joe, long_order, LargeOrderPromo()))print(Order(joe, cart, LargeOrderPromo()))

输出:

策略一:为积分为1000或以上的顾客提供5%折扣<订单 总价: 42.00 实付: 42.00>

<订单 总价: 42.00 实付: 39.90>策略二:单个商品为20个或以上时提供10%折扣<订单 总价: 30.00 实付: 28.50>策略三:订单中的不同商品达到10个或以上时提供7%折扣<订单 总价: 10.00 实付: 9.30>

<订单 总价: 42.00 实付: 42.00>

3、使用函数实现策略模式

在传统策略模式中,每个具体策略都是一个类,而且都只定义了一个方法,除此之外没有其他任何实例属性。它们看起来像是普通的函数一样。的确如此,在 Python 中,我们可以把具体策略换成了简单的函数,并且去掉策略的抽象类。

from collections importnamedtuple

Customer= namedtuple('Customer', 'name fidelity')classLineItem:def __init__(self, product, quantity, price):

self.product=product

self.quantity=quantity

self.price=pricedeftotal(self):return self.price *self.quantityclassOrder:def __init__(self, customer, cart, promotion=None):

self.customer=customer

self.cart=list(cart)

self.promotion=promotiondeftotal(self):if not hasattr(self, '__total'):

self.__total = sum(item.total() for item inself.cart)return self.__total

defdue(self):if self.promotion isNone:

discount=0else:

discount=self.promotion(self)return self.total() -discountdef __repr__(self):

fmt= '<订单 总价: {:.2f} 实付: {:.2f}>'

returnfmt.format(self.total(), self.due())deffidelity_promo(order):"""为积分为1000或以上的顾客提供5%折扣"""

return order.total() * .05 if order.customer.fidelity >= 1000 else0defbulk_item_promo(order):"""单个商品为20个或以上时提供10%折扣"""discount=0for item inorder.cart:if item.quantity >= 20:

discount+= item.total() * .1

returndiscountdeflarge_order_promo(order):"""订单中的不同商品达到10个或以上时提供7%折扣"""distinct_items= {item.product for item inorder.cart}if len(distinct_items) >= 10:return order.total() * .07

return0

joe= Customer('John Doe', 0)

ann= Customer('Ann Smith', 1100)

cart= [LineItem('banana', 4, 0.5),

LineItem('apple', 10, 1.5),

LineItem('watermellon', 5, 5.0)]print('策略一:为积分为1000或以上的顾客提供5%折扣')print(Order(joe, cart, fidelity_promo))print(Order(ann, cart, fidelity_promo))

banana_cart= [LineItem('banana', 30, 0.5),

LineItem('apple', 10, 1.5)]print('策略二:单个商品为20个或以上时提供10%折扣')print(Order(joe, banana_cart, bulk_item_promo))

long_order= [LineItem(str(item_code), 1, 1.0) for item_code in range(10)]print('策略三:订单中的不同商品达到10个或以上时提供7%折扣')print(Order(joe, long_order, large_order_promo))print(Order(joe, cart, large_order_promo))

其实只要是支持高阶函数的语言,就可以如此实现,例如 C#中,可以用委托实现。只是如此实现反而使代码变得复杂不易懂。而 Python 中,函数天然就可以当做参数来传递。

值得注意的是,《设计模式:可复用面向对象软件的基础》一书的作者指出:“策略对象通常是很好的享元。” 享元是可共享的对象,可以同时在多个上下文中使用。共享是推荐的做法,这样不必在每个新的上下文(这里是 Order 实例)中使用相同的策略时不断新建具体策略对象,从而减少消耗。因此,为了避免 [策略模式] 的运行时消耗,可以配合 [享元模式] 一起使用,但这样,代码行数和维护成本会不断攀升。

在复杂的情况下,需要具体策略维护内部状态时,可能需要把“策略”和“享元”模式结合起来。但是,具体策略一般没有内部状态,只是处理上下文中的数据。此时,一定要使用普通的函数,别去编写只有一个方法的类,再去实现另一个类声明的单函数接口。函数比用户定义的类的实例轻量,而且无需使用“享元”模式,因为各个策略函数在 Python 编译模块时只会创建一次。普通的函数也是“可共享的对象,可以同时在多个上下文中使用”。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值