动手学数据分析 Task04

学习目标:

熟悉各种数据可视化方法

学习内容:

掌握matplotlib画图及其优化方法

学习产出:

# 导入库
import numpy as np
import pandas as pd
% matplotlib inline #使用jupyter需要加这句
import matplotlib.pyplot as plt

# 导入数据
df = pd.read_csv('result.csv')

# 画图
# 柱状图bar,barh;男女中生存人与死亡人数
sex = df.groupby(['Sex','Survived'])['Survived'].count().unstack()
sex.plot(kind='bar', stacked=True, alpha=0.5)
plt.xlabel("Sex")
plt.ylabel("Survived_count")
plt.title('bar')
plt.grid(axis="y")# 加网格线
sex.plot(kind='barh', stacked=True, alpha=0.5)
plt.ylabel("Sex")
plt.xlabel("Survived_count")
plt.title('barh')
plt.xticks(rotation=45) # x 轴上标签的角度
plt.grid(axis="x")# 加网格线
plt.xticks(rotation=45) # x 轴上标签的角度
plt.legend(['Survived', 'died']) # 图例
plt.show()

# 折形图plot;不同仓位等级的人生存和死亡人员
pclass=df.groupby(['Pclass'])['Survived'].value_counts().unstack()
pclass.plot(stacked=True)
plt.ylabel("Survived_count")
plt.xlabel("Pclass")
plt.title('plot')

# 分类直方图barplot
import seaborn as sns
sns.countplot(x="Pclass", hue="Survived", data=df)

# 面积图
facet = sns.FacetGrid(text, hue="Survived",aspect=3)
facet.map(sns.kdeplot,'Age',shade= True)
facet.set(xlim=(0, text['Age'].max()))
facet.add_legend()

# 直方图hist,不同年龄的人生存和死亡人员
age=df.groupby(['Age'])['Survived'].value_counts().unstack()
age.plot(kind='hist',ec="yellow", alpha=0.5, stacked=True)

# kde图
df.groupby(['Age'])['Survived'].value_counts().unstack().plot(kind='kde', stacked=True, alpha=0.5)
plt.title('Age_Survived')
plt.ylabel('count')
plt.show()
引用\[1\]:在过去的两个月里,Databricks公司举办了一场会议,将数据团队聚集在一起,共召开220多个会议,有无数机会与同行交流——超过50,000名数据科家、数据工程师、分析师、商业领袖和其他数据专业人士。 Spark + AI 峰会虚拟环境。 引用\[2\]:本书以数据智能为灵魂,以Spark 2.4.X版本为载体,以Spark+ AI商业案例实战和生产环境下几乎所有类型的性能调优为核心,对企业生产环境下的Spark+AI商业案例与性能调优抽丝剥茧地进行剖析。全书共分4篇,内核解密篇基于Spark源码,从一个实战案例入手,循序渐进地全面解析Spark 2.4.X版本的新特性及Spark内核源码;商业案例篇选取Spark开发中最具代表性的经典习案例,在案例中综合介绍Spark的大数据技术;性能调优篇覆盖Spark在生产环境下的所有调优技术; Spark+ AI内幕解密篇讲解深度动手实践,通过整合Spark、PyTorch以及TensorFlow揭秘Spark上的深度习内幕。本书适合所有大数据和人工智能习者及从业人员使用。对于有丰富大数据和AI应用经验的人员,本书也可以作为大数据和AI高手修炼的参考用书。同时,本书也特别适合作为高等院校的大数据和人工智能教材。 问题:spark数据分析实战——奥运会 回答: Spark是一个强大的大数据处理框架,可以用于数据分析和处理。在奥运会数据分析实战中,Spark可以帮助我们处理大规模的奥运会数据,进行数据清洗、转换和分析。通过使用Spark的分布式计算能力和优化技术,我们可以高效地处理大量的奥运会数据,并从中提取有价值的信息。同时,Spark还提供了丰富的数据处理和机器习库,可以帮助我们进行数据挖掘和建模,以便更好地理解和预测奥运会的趋势和结果。通过结合Spark和AI技术,我们可以实现更深入的奥运会数据分析,并为奥运会的组织者、运动员和观众提供更好的决策支持和用户体验。 #### 引用[.reference_title] - *1* *2* [免费参加全球最大的Spark+AI峰会(Databricks 2020年6月22-26日)!免费访问峰会主题演讲及分组会议!](https://blog.csdn.net/duan_zhihua/article/details/106729096)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [热烈祝贺王家林大咖大数据经典传奇著作《Spark大数据商业实战三部曲》 畅销书籍第二版 清华大出版社发行...](https://blog.csdn.net/duan_zhihua/article/details/106294896)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值