python 分类变量转为哑变量_将不同的分类变量转换为虚拟变量

没有。priority或cluster中的列不会被误解为严重性的第三列。在

以下是如何保存引用的答案:

在pandas.get_dummies中有一个参数,即drop_first允许您保留还是删除引用(是否将k或k-1虚拟对象排除在k个分类级别之外)。在

请注意drop_first = False这意味着引用不会被删除,并且k个伪对象是在k个分类级别上创建的!设置drop_first = True,编码后它将删除引用列。在

{此处链接^。在

与您的例子一样,severity有3个类别S1、S2和S3。

创建假人后,这些类别中的一个将始终为1,其他类别为0。在

s1为[1,0,0],s2为[0,1,0],s3为[0,0,1]

现在,如果您删除类别s1的列。在

如果严重性为S1,则值将为[0,0]

[1,0]如果严重性为S2

[0,1]如果严重性为S3。在

所以这里没有信息丢失,而且您的模型只需要处理一个列。

这就是为什么总是建议将drop_first参数保留为True。在

编辑:

应用假人后,您将得到如下列:severity_S1 severity_S2 severity_S3

1 0 0 # when value is S1

0 1 0 # when value is S2

0 0 1 # when value is S3

pandas.get_dummies()创建上述引用后删除第一列。

因此,您的数据如下所示:

^{pr2}$

对于所有这些变量,最终数据如下所示:

由于空间问题,我使用短列名:s2 s3 p2 p3 B C D

0 0 1 0 1 0 0 # For row with S1, P2 and B

0 1 0 1 0 1 0 # For row with S3, P3 and C

1 0 0 0 0 0 1 # For row with S2, P1 and D

1 0 0 0 0 0 0 # For row with S2, P1 and A

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值