python信号降噪_EEG(P300)信号数据滤波降噪

我有大量的脑电图数据(20000),我把它们转换成P300(每1000个原始数据的平均值代表1个P300)。(我用了Python)

我的问题是减少噪音。我删减了30%的数据,因为P300信号在300毫秒后开始可见。但是,在我的数据中有噪音。我想用过滤器去除我的噪音。在

这是一些我的原始数据样本1.09863 -2.99072 0.549316 3.8147

0.595093 -3.86047 -0.244141 3.32642

0.183105 -2.59399 0.808716 2.28882

-0.305176 -2.74658 2.10571 2.02942

-0.991821 -4.3335 1.31226 2.09045

-1.46484 -5.26428 0.686646 0.732422

-1.75476 -4.47083 1.34277 -1.06812

-2.05994 -3.60107 1.35803 -1.49536

-2.88391 -2.99072 1.34277 -1.5564

-3.98254 -3.20435 0.62561 -1.54114

-4.76074 -1.89209 0.183105 -1.46484

-4.57764 -0.930786 0.350952 -1.17493

-3.58582 -3.11279 -0.62561 -0.457764

-2.27356 -4.36401 -1.2207 -0.656128

你有没有建议和使用简单的滤波器来降低噪音?在

提前谢谢。在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值