广西科技大学的计算机专业怎么样,广西科技大学评价怎么样 王牌专业有哪些...

广西科技大学位于柳州市,是学士、硕士授权单位,也是"卓越医生教育培养计划"试点高校。学校在2020年广西壮族自治区大学排名中位列第七,拥有强大的师资力量,包括高级职称教师和博士、硕士学历教师。学校设有多个二级学院和创新团队,涵盖机械、化学、建筑、信息等多个学科领域。在人才培养和科研方面表现出色,尤其在车辆工程和创新研究方面有显著成就。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

广西科技大学坐落在柳州市,是国务院学位委员会批准的学士、硕士学位授权单位,是“卓越医生教育培养计划”试点高校。广西科技大学雄居2020广西壮族自治区大学排名前10强。

02f6f1700fac63c19fcb3b83a2805078.png

2020广西科技大学排名名次学校名称全国排名办学层次

1广西大学127中国高水平大学

2广西师范大学140区域一流大学

3桂林理工大学192区域一流大学

4桂林电子科技大学204区域一流大学

5广西民族大学218中国高水平大学

6南宁师范大学290区域高水平大学

7广西科技大学357区域高水平大学

8广西财经学院369区域知名大学

9北部湾大学423区域知名大学

10玉林师范学院426区域知名大学

11梧州学院438区域知名大学

11百色学院438区域知名大学

13河池学院448区域知名大学

14贺州学院461区域知名大学

15桂林航天工业学院530区域知名大学

16广西民族师范学院564区域知名大学

16桂林旅游学院564区域知名大学

18广西科技师范学院626区域知名大学

广西医科大学230区域一流大学

广西中医药大学340区域一流大学

广西艺术学院370区域一流大学

桂林医学院420区域知名大学

右江民族医学院450区域知名大学

广西警察学院550区域高水平大学

广西科技大学师资力量

该校有专任教师近1400人,具有高级职称教师636人,高级专业技术职务教师占总专任教师总数的近50%,具有博士学位、硕士学位1013人。有八桂学者、特聘专家、优秀专家、八桂名师、教学名师、广西新世纪十百千人才工程人选(第二层次)等省部级高层次人才。同时还有广西高校高水平创新团队、广西人才小高地创新团队、自治区级教学团队等创新团队。

87052ecac0ac0d8b2335032546a8d892.png

有广西高校优秀教学团队6个(高等数学教学团队、电子设计与实践教学团队、西方经济学教学团队、机械工程及自动化专业教学团队、基础护理学教学团队等)。车辆工程设计、制造及控制技术”团队成为广西高校首批人才小高地创新团队,“车辆零部件先进设计与制造创新研究团队”获得自治区级立项建设。

广西科技大学院系设置

据2020年4月学校官网资料显示,机械与交通工程学院、生物与化学工程学院、土木建筑工程学院、电气与信息工程学院、计算机科学与通信工程学院、软件学院、经济与管理学院、职业技术教育学院、应用技术学院、理学院(公共数理教学部)、外国语学院(大学英语教学部)、艺术与文化传播学院(公共文化艺术教学部)、马克思主义学院、体育学院(公共体育教学部)、国际教育学院、继续教育学院、启迪数字学院、宏达威爱科技学院、医学部共16个二级学院,一个学部。

数据集介绍:多类道路车辆目标检测数据集 一、基础信息 数据集名称:多类道路车辆目标检测数据集 图片数量: - 训练集:7,325张图片 - 验证集:355张图片 - 测试集:184张图片 总计:7,864张道路场景图片 分类类别: - Bus(公交车):城市道路高速场景中的大型公共交通工具 - Cars(小型汽车):涵盖轿车、SUV等常见乘用车型 - Motorbike(摩托车):两轮机动车辆,含不同骑行姿态样本 - Truck(卡车):包含中型货运车辆重型运输卡车 标注格式: YOLO格式标注,包含归一化坐标的边界框类别标签,适配主流目标检测框架。 数据特性: 覆盖多种光照条件道路场景,包含车辆密集分布复杂背景样本。 二、适用场景 自动驾驶感知系统开发: 用于训练车辆识别模块,提升自动驾驶系统对道路参者的实时检测分类能力。 交通流量监控分析: 支持构建智能交通管理系统,实现道路车辆类型统计密度分析。 智慧城市应用: 集成至城市级交通管理平台,优化信号灯控制道路资源分配。 学术研究领域: 为计算机视觉算法研究提供标准化评测基准,支持多目标检测模型优化。 三、数据集优势 高场景覆盖率: 包含城市道路、高速公路等多种驾驶环境,覆盖车辆静止、行驶、遮挡等现实场景。 精细化标注体系: 采用YOLO标准格式标注,每张图片均经过双重质检,确保边界框类别标签的精准对应。 类别平衡设计: 四类车辆样本量经科学配比,避免模型训练时的类别偏向问题。 工程适配性强: 可直接应用于YOLO系列模型训练,支持快速迁移至车载计算平台部署。 现实应用价值: 专注自动驾驶核心检测需求,为车辆感知模块开发提供高质量数据支撑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值