pandas 每一列画图_别找了,这是 Pandas 最详细教程了~

本文是一篇关于Pandas的详细教程,涵盖了读取数据、绘图、逻辑运算、统计分析等功能。Pandas提供了一系列实用工具,如read_csv、.plot()和.value_counts(),便于数据处理和可视化。此外,文章还介绍了如何利用tqdm进行进度跟踪,以及如何进行SQL般的数据关联和分组操作。Pandas因其易用性、直观性和速度而成为数据科学家的首选工具。
摘要由CSDN通过智能技术生成

来源:机器之心

Python 是开源的,它很棒,但是也无法避免开源的一些固有问题:很多包都在做(或者在尝试做)同样的事情。如果你是 Python 新手,那么你很难知道某个特定任务的最佳包是哪个,你需要有经验的人告诉你。有一个用于数据科学的包绝对是必需的,它就是 pandas。

pandas 最有趣的地方在于里面隐藏了很多包。它是一个核心包,里面有很多其他包的功能。这点很棒,因为你只需要使用 pandas 就可以完成工作。

pandas 相当于 python 中 excel:它使用表(也就是 dataframe),能在数据上做各种变换,但还有其他很多功能。

如果你早已熟知 python 的使用,可以直接跳到第三段。

让我们开始吧!

pandas 最基本的功能

读取数据

data = pd.read_csv( my_file.csv )
data = pd.read_csv( my_file.csv , sep= ; , encoding= latin-1 , nrows=1000, skiprows=[2,5])

sep 代表的是分隔符。如果你在使用法语数据,excel 中 csv 分隔符是「;」,因此你需要显式地指定它。编码设置为 latin-1 来读取法语字符。nrows=1000 表示读取前 1000 行数据。skiprows=[2,5] 表示你在读取文件的时候会移除第 2 行和第 5 行。

  • 最常用的功能:read_csv, read_excel

  • 其他一些很棒的功能:read_clipboard, read_sql

写数据

data.to_csv( my_new_file.csv , index=None)

index=None 表示将会以数据本来的样子写入。如果没有写 index=None,你会多出一个第一列,内容是 1,2,3,...,一直到最后一行。

我通常不会去使用其他的函数,像.to_excel, .to_json, .to_pickle 等等,因为.to_csv 就能很好地完成工作,并且 csv 是最常用的表格保存方式。

检查数据

fc60fa9d718f5559389ad656f4eb208c.png
image
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值