求与下面谓词公式等值的前束范式_谓词公式x(p(x)yr(y))q(x)中量词x的作用域是()...

本文探讨了谓词公式x(p(x)yr(y))q(x)中量词x的作用域问题,通过一系列选择题和填空题,详细阐述了量词在不同情况下的覆盖范围和影响。涉及知识点包括量词的边界、变元性质、真值判断以及等值公式转换,适合于学习逻辑和谓词演算的读者进行理解和练习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

a7f4a3f590493a1e451dd952a488fd7c.gif 谓词公式x(p(x)yr(y))q(x)中量词x的作用域是()

(7页)

04166338a069162f244539bf26283a38.gif

本资源提供全文预览,点击全文预览即可全文预览,如果喜欢文档就下载吧,查找使用更方便哦!

19.90 积分

一、 选择题1. 谓词公式"x(P(x)Ú$yR(y))®Q(x)中量词"x的作用域是()A. "x(P(x)Ú$yR(y)) B.P(x)C. (P(x)Ú$yR(y)) D.P(x),Q(x)2. 谓词公式"x(P(x)Ú$yR(y))®Q(x)中变元x是()A.自由变量 B.约束变量C.既不是自由变量也不是约束变量D.既是自由变量也是约束变量3. 若个体域为整体域,下列公式中哪个值为真?()A."x$y(x+y=0) B.$y"x(x+y=0)C."x"y(x+y=0) D.Ø$x$y(x+y=0)4. 设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式$x(P(x)ÙQ(x))在下面哪个论域中是可满足的?()A.自然数集 B.整数集 C.实数集 D.以上均不成立5. 设C(x):x是运动员,G(x):x是强壮的。命题“没有一个运动员不是强壮的”可符号化为()A.Ø"x(C(x)ÙØG(x)) B.Ø"x(C(x)®ØG(x))C.Ø$x(C(x)ÙØG(x)) D.Ø$x(C(x)®ØG(x))6. 设A(x):x是人,B(x):x犯错误,命题“没有不犯错误的人”符号化为()A."x(A(x)ÙB(x)) B.Ø$x(A(x)®ØB(x))C.Ø$x(A(x)ÙB(x)) D.Ø$x(A(x)ÙØB(x))7. 设Z(x):x是整数,N(x):x是负数,S(x,y):y是x的平方,则“任何整数的平方非负”可表示为下述谓词公式()A."x"y(Z(x)ÙS(x,y)®ØN(y))B."x$y(Z(x)ÙS(x,y)®ØN(y))C."x"y(Z(x)®S(x,y)ÙØN(y))D."x(Z(x)ÙS(x,y)®ØN(y))8. 令F(x):x是火车,G(y):y是汽车,H(x,y):x比y快。则语句“某些汽车比所有的火车慢”可表示为()A.$y(G(y)®"x(F(x)ÙH(x,y)))B.$y(G(y)Ù"x(F(x)®H(x,y)))C."x$y(G(y)®(F(x)ÙH(x,y)))D.$y(G(y)®"x(F(x)®H(x,y)))9. 设个体域A={a,b},公式"xP(x)Ù$xS(x)在A中消去量词后应为()A.P(x)ÙS(x)B.P(a)ÙP(b)Ù(S(a)ÚS(b))C.P(a)ÙS(b)D.P(a)ÙP(b)ÙS(a)ÙS(b)10. 在谓词演算中,下列各式哪个是正确的?()A.$x"yA(x,y)Û"y$xA(x,y)B.$x$yA(x,y)Û$y$xA(x,y)C.$x"yA(x,y)Û"x$yA(x,y)D."x"yA(x,y)Û"y"xA(x,y)11. 下列各式哪个不正确?()A."x(P(x)ÚQ(x))Û"xP(x)Ú"xQ(x)B."x(P(x)ÙQ(x))Ü"xP(x)Ù"xQ(x)C.$x(P(x)ÚQ(x))Û$xP(x)Ú$xQ(x)D."xP(x)ÙQ)Û"xP(x)ÙQ12. 下面谓词公式哪个是前束范式?()A."x"y$z(B(x,y)®A(z))B.Ø"x$yB(x,y)C.$x"y"x(A(x,y)ÙB(x,y))D."x(A(x,y)®$yB(y))13. 在谓词演算中:P(a)是"xP(x)的有效结论,其理论根据是()A.全称规定规则(US) B.全称推广规则(UG)C.存在规定规则(ES) D.存在推广规则(EG)二、 填空题1. 令R(x):x是实数,Q(x):x是有理数。(1) 命题“并非每个实数都是有理数”。其符号化为 ① 。(2) 命题“虽然有些实数是有理数,但并非一切实数都是有理数”。则其符号化可表示为 ② 。2. 设G(x):x是金子,F(x):x是闪光的,则命题“金子是闪光的,但闪光的不一定是金子”符号化为 。3. 设C(x):x是计算机,P(x,y):x能做y,I(x):x是智能工作,则命题“并非所有智能工作都能由计算机来做”符号化为 。4. 设Q(x):x是偶数,P(x):x是素数,则命题“存在惟一一个偶素数”可符号化为 ① ,“至多存在一个偶素数”可符号化为 ② 。5. 设Q(x):x是奇数,Z(x):x是整数,则语句“不是所有整数都是奇数”所对应的谓词公式为 。6. 设个体域为自然数集,P(x):x是奇数,Q(x):x是偶数,则命题“不存在既是奇数又是偶数的自然数”可符号化为 。7. 设个体域为全总个体域,R(x):x是实数,Q(x):x是有理数,Z(x):x是整数,则命题“所有的有理数是实数”,“有些有理数是整数”,“有些有理数是实数担不是整数”符号化分别为 ① , ② , ③ 。8. "x"y(P(x,y)ÙQ(y,z))Ù$xP(x,y)中"x的作用域为 ① ,"y的作用域为 ② ,$x的作用域为 ③ 。9. 公式"x(P(x)®Q(x,y)Ú$R(y,z))®S(x)中自由变量为 ① ,约束变量为 ② 。10. 取个体域为整数集,给定下列公式:(1)."x$y(x·y=0) (2)."x$y(x·y=1)(3)$x$y(x·y=2) (4)"x"y$z(x-y=z)(5).x-y=-y+x (5)."x"y(x·y=y)(7)"x(x·y=x) (8).$x"y(x+y=2y)上面公式中,真命题的有 ① ,假命题的有 ② 。*11. 下列谓词公式 (1).Ø($xA(x))与"xØA(x) (2)."x(A(x)ÚB(x))与"xA(x)Ú"xB(x) (3)."x(A(x)ÙB(x))与"xA(x)Ù"xB(x) (4).$x"yD(x,y)与"y$xD(x,y)中 是等值的。12. 对公式"x(P(x)ÚQ(x)),其中P(x):x=1,Q(x):x=2,当论域为{1,2}时,其真值为 ① ,当论域为{0,1,2}时,其真值为 ② 。13. 设个体域为A={a,b,c},消去公式"xP(x)Ù$xQ(x)中的量词,可得 。14. 下列各式(1)."x(P(x)ÚQ(x))®("xP(x)Ú$xQ(x))(2).("x(A(x)®B(x))ÙA(c))®A(c)(3).("x(ØA(x)®B(x))Ù"xØB(x))®$xA(x)(4).($x(P(x)ÙQ(x)))®$xP(x)®ØQ(x))其中 是永真式。15. 下列各式(1).$y"xA(x,y) (2).$x"yA(x,y)(3)."x$y A(x,y) (4).$x$yA(x,y)它们之间存在着 的推理关系。可供选择的项有:A.(1)Þ(2);(2) Þ(3) B.(2) Þ(1);(3) Þ(4)C.(1) Þ(3);(4) Þ(3) D.(4) Þ(1);(1) Þ(3)E.(1) Þ(3);(2) Þ(4)16. 填上联结词:"xP(x)Ú"xQ(x) "x(P(x)ÚQ(x))*17. 只用联结词Ø,",®,表示以下的公式。 (1).$x(P(x)ÙQ(x))= ① ;(2).$x(P(x)«"yQ(y))= ② ;(3)."y("xP(x)ÚØQ(y))= ③ 。18. 给定下面谓词公式:(1)."x(ØF(x)®ØF(x))(2)."xF(x)®$xF(x)(3).Ø(F(x)®("yG(x,y)®F(x)))(4)."x$yF(x,y)®$x"yF(x,y)(5).Ø"xF(x)«$xØF(x)(6)."x(F(x)ÙG(x))®("xF(x)Ú"xG(x))(7).$x$yF(x,y)®"x"yF(x,y)(8)."x(F(x)ÚG(x))®("xF(x)Ú"xG(x))(9).("xF(x)Ú"xG(x))®"x(F(x)ÚG(x))(10)."x"yF(x,y)«"y"xF(x,y)(11).Ø("xF(x)®"yG(y))Ù"yG(y)上面11个公式中,为重言式的有 ① ,为矛盾式的有 ② 。19. 给定下列各公式:(1).(Ø$xF(x)Ú"yG(y))Ù(F(u)®"zH(z))(2).$xF(y,x)®"yG(y)(3)."x(F(x,y)®"yG(x,y))则 ① 是(1)的前束范式, ② 是(2)的前束范式, ③ 是(3)的前束范式。供选择的答案有①$x"y"z((ØF(x)ÚG(y))Ù(F(u)®H(z)))②"x"y"z((ØF(x)ÚG(y))Ù(F(u)®H(z)))③$x"y(F(y,x)®G(y))④"x"y(F(z,x)®G(y))⑤"x"y(ØF(z,x)ÚG(y))⑥"x$y(F(x,z)®G(x,y))⑦"x"y(F(x,z)®G(x,y))⑧"y"x(F(x,z)®G(x,y))⑨"y"x(ØF(x,z)"G(y))20. 谓词公式"xP(x)®"xQ(x)Ú$yR(y)的前束范式为 。21. 谓词公式"x(P(x)®Q(x,y)Ú$zR(y,z))®S(x)的前束范式为 。*22. 谓词公式Ø$x(Ø"yG(y,b)®H(x))的前束范式为 。23. 在谓词逻辑中给出四个推理:(1).前提:"x(F(x)®G(x)),$yF(y); 结论:$yG(y)(2).前提:$x(F(x)ÙG(x)); 结论:"yF(y)(3).前提:$xF(x),$xG(x); 结论:$y(F(y)ÙG(y))(4).前提:"x(F(x)®H(x)),ØH(y); 结论:"x(ØF(x))以上四个推理中正确的有 。24. 在谓词逻辑中构造下面推理的证明:每个喜欢步行的人都不喜欢坐汽车,每个人或者喜欢坐汽车或者喜欢骑自行车。有的人不喜欢骑自行车,因而有的人不喜欢步行。命题符号化:F(x):x喜欢步行;G(x):x喜欢坐汽车;H(x):x喜欢骑自行车。前提:"x(F(x)®ØG(x)),"x(G(x)ÚH(x)),$x(ØH(x));结论:$x(ØF(x))。三、 判断题1. 在谓词公式中,一个变量只能是自由变量或约束变量中的一种。()2. 公式"x(P(x)®Q(x))ÚR(y)中"x的作用域为P(x)。()3. 同一谓词公式,指定不同的论域,其真值不一定相同。()4. 谓词公式"xP(x)Ù$y(ØP(y))是矛盾式。()*5. "x(P(x)®Q(x))®($xP(x)®$xQ(x))为真。()6. 对公式$z(P(z)ÙQ(x,z)ÙM(z,y))ÚR(z)中自由变量代入后,有$z(P(z)ÙQ(a,z)ÙM(z,b))ÚR(z)()7. "x"y(P(x)®Q(y))Û$xP(x)®"yQ(y)()*8. P(x),Q(x)表示谓词,P表示命题,有"x(P(x)®P)Û$xP(x)®P()*9. "x(A(x)ÙB(x))Û"xA(x)Ù"xB(x)()*10. "x(A(x)®B(x))Þ$xA(x)Ù$xB(x)()11. 任意一个谓词公式都与一个前束范式等价。()12. 公式"xP(x)®$yQ(x,y)前束范式"x"y(P(x)®Q(x,y))为()13. 公式$x(Ø$yP(x,y)®($zQ(z)®R(x)))的前束范式为$x$y$z(P(x,y)ÚØQ(z)ÚR(x))()14. 下面的推理:条件:"x(P(x)ÚQ(x)),根据全称规定(US)有:P(a)ÚQ(b)是正确的。()15. 对公式$z(P(z)ÙQ(x,z)ÙM(z,y))ÚR(z)中约束变量z改名后,得到的等价公式为:$t(P9t)ÙQ(x,t)ÙM(t,y))ÚR(t)()四、 综合题1. 用谓词和量词将下列命题符号化:(1).没有不犯错误的人;(2).尽管有人聪明,但未必一切人都很聪明;(3).每个计算机系的学生都学离散数学;(4).所有的人都学习和工作;(5).并非一切推理都能用计算机完成;(6).任何自然数都有惟一的一个后继数。*2. 令S(x,y,z)表示“x+y=z”,G(x,y)表示“x=y”,L(x,y)表示“x0当且仅当有这样的y,使得x≥y。 (2).并非对一切x,都存在y,使得x≤y。 (3).对任意的x,若x+y=x,当且仅当y=0。3. 用谓词公式表示命题“”,并写出该命题的否定命题。*4. 设P(x):x是外语学的好的学生,Q(x):x是三好学生,对下述自然语言用谓词符号化: (1).并不是外语学的好的都是三好学生。 (2).有这样的学生,外语学的好而不是三好学生,但外语学不好的学生一定不是三好学生。5. 指出下列公式中量词每次出现的作用域,并指出个体变量是约束变量还是自由变量。(1)."x"y(R(x,y)ÚL(y,z))Ù$xH(x,y)(2)."x(P(x)Ù$xQ(x))Ú("xP(x)®Q(x))6. 设f,g,h是二元运算符号,E,L是二元谓词符号,考查的个体域为有理数集。给出解释如下:f(x,y)=x·y; g(x,y)=x+y; h(x,y)=x2-y2; a=0; b=1;E(x,y):x=y; L(x,y):x1”;A(x)表示“x>1”;B(x)表示“x是某个自然数的平方”。请在此基础上,求下面公式的真值: "x(A(x)®(A(a)®B(x))®((P®"xA(x))®B(a))9. 下列各式翻译成自然语言,然后在不同的个体域中确定它们的真值:(1)."x$y(x·y=0)(2).$x"y(x·y=0)(3)."x$y(x·y=1)(4).$x"y(x·y=1)(5)."x$y(x·y=x)(6).$x"y(x·y=x)(7)."x"y$z(x-y=z)个体域分别为:①实数集②整数集③正整数集④非负实数集10. 设解释T如下:个体域为实数集R,元素a=0,函数f(x,y)=x-y,特定谓词F(x,y)为x5,R(x):x≤7。根据解释T,求下列各式的真值:(1)."x(F(x)ÙG(x))(2)."x(R(x)®F(x))ÚG(5)(3).$x(F(x)ÚG(x))13. 设A(x)是一个含有个体变量x的谓词公式,证明下面等值式成立:Ø"xA(x)Û$x(ØA(x))14. 设A(x),B(x)均为含有自由变量x的任意谓词公式,证明:"x(A(x)®B(x))Þ"xA(x)®"xB(x)15. 证明:"x"y(G(x)«H(y))Þ"xG(x)«"xH(x)。16. 设G(x),H(x)分别是谓词公式,试证明"xG(x)®$xH(x)Û$x(G(x)®H(x))17. 求下列各式的前束范式,要求使用约束变量改名规则:(1).Ø$xF(x)®"yG(x,y)(2).Ø("xF(x,y)Ú$yG(x,y))18. 求下列公式的前束范式,要求使用自由变量改名规则:(1)."xF(x)Ú$yG(x,y)(2).$x(F(x)Ù"yG(x,y,z))®$zH(x,y,z)*19. 将下列公式化成等价的前束范式: "x"y($zP(x,y,z)Ù($uQ(x,u)®$vQ(y,v)))20. 求谓词公式"x(F(x)®G(x))®($xF(x)®$xG(x))的前束范式。21. 求谓词公式"x"y($z(P(x,z)ÙP(y,z))®$uQ(x,y,u))的一个前束范式。*22. 求公式$xP(x)®(Q(y)®Ø($yR(y)®"xS(x)))的前束范式。*23. 下列公式是否成立,成立则证明,不成立,则举例说明之。 (1)."x$yA(x,y)Þ$x$yA(x,y) (2).$xA(x)Ù$xB(x)Þ$x(A(x)ÙB(x))*24. 下面公式是否是永真式?说明理由。 (1).(A®$xB(x))«$x(A®B(x)) (2).$x(A(x)®B(x))«("xA(x)®$xB(x)) (3)."x(A(x)ÙB(x))«"xA(x)Ù"xB(x)*25. 下面的公式是否是永真式?是则证明之,不是,请举出反例: (1).$x"yA(x,y)«"y$xA(x,y) (2).($xA(x)®$xB(x))®$x(A(x)®B(x))*26. 下面公式是否有效,对有效的公式加以证明,对无效的公式加以反驳。 (1)."x(P(x)ÚQ(x))®("xP(x)Ú"xQ(x)) (2).("xP(x)Ú"xQ(x))®"x(P(x)ÚQ(x))27. 航海家都教育自己的孩子成为航海家,有一个人教育他的孩子去做飞行员,证明:这个人一定不是航海家。28. 指出下列推理中的错误:(1). ①"xF(x)®G(x) 前提引入②F(y)®G(y) ①US(2). ①"x(F(x)ÚG(x)) 前提引入②F(a)ÚG(b) ①US(3). ①F(x)®G(x) 前提引入②$y(F(y)®G(y)) ①EG(4). ①F(x)®G(c) 前提引入②$x(F(x)®G(x)) ①EG(5). ①F(a)®G(b) 前提引入②$x(F(x)®G(x)) ①EG(6). ①$x(F(x)ÙG(x)) 前提引入②$y(H(y)ÙR(y)) 前提引入③F(c)ÙG(c) ①ES④F(c) ③化简⑤H(c)ÙR(c) ②ES⑥H(c) ⑤化简⑦F(c)ÙH(c) ④⑥合取⑧$x(F(x)ÙH(x)) ⑦EG*29. 试找出下列推理过程中的错误,写出正确的推导过程,说明理由: ①"x(P(x)®Q(x)) 条件②P(y)®Q(y) 全称规定(US)③$xP(x) 条件④P(y) 存在规定(ES)⑤Q(y) 由条件②④⑥$xQ(x) 存在推广(EG)*30. 下面推理是否是一个有效的推理,为什么? ①"x$yQ(x,y) 条件②$yQ(a,y) 全称规定(US)③Q(a,b) 存在规定(ES)④"xQ(x,b) 全称推广(UG)⑤$y"xQ(x,y) 存在推广(EG)*31. 下面推广是否正确,若有错,请指出: "x(A(x)®B(x)) Û"x(ØA(x)ÚB(x)) ①Û"XØ(A(x)ÙØB(x)) ②ÛØ$x(A(x)ÙØB(x)) ③ÛØ($xA(x)Ù$xØB(x)) ④ÛØ$xA(x)ÚØ$x(ØB(x)) ⑤ÛØ$xA(x)Ú"xB(x) ⑥Û$xA(x)®"xB(x) ⑦*32. 用谓词演算推理规则证明: "x(P(x)®(Q(y)ÙR(x))),"xP(x)ÞQ(y)Ù$x(P(x)ÙR(x))33. 改正下面证明中的错误:前提:"x($y(S(x,y)ÙM(y))®$z(P(z)ÙR(x,z)));结论:Ø$zP(z)®"x"y(S(x,y)®ØM(y))。证明过程:①"x($y(S(x,y)ÙM(y))®$z(P(z)ÙR(x,z))); P②$y(S(b,y)ÙM(y))®$z(P(z)ÙR(b,z)) ①US③Ø$zP(z) P(附加前提)④"z(ØP(z)) ③T,E⑤ØP(a) ④US⑥ØP(a)ÚØR(b,a) T,⑤I⑦"z(ØP(z)ÚØR(b,z)) ⑥UG⑧Ø$z(P(z)ÙR(b,z)) ⑦T,E⑨Ø$y(S(b,y)ÙM(y)) ②,⑧T,L⑩"y(ØS(b,y)ÚØM(y)) ⑨T,E⑾"y(S(b,y)®ØM(y)) ⑩T,E⑿"x"y(S(x,y)®ØM(y)) ⑾UG⒀Ø$zP(z)®"x"y(S(x,y)®ØM(y)) CP 关 键 词: 谓词 公式 yr 量词 作用

4d91c43bfc72ca913299809b07b4968f.gif  天天文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。

关于本文

本文标题:谓词公式x(p(x)yr(y))q(x)中量词x的作用域是()

链接地址: https://www.wenku365.com/p-20679522.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值