你必须做一些更复杂的事情来实现你想要的东西.
您不能选择这样的数组切片,但可以选择所需的所有特定索引.
首先,您需要构造一个表示您希望选择的行的数组.即.
data = numpy.array([[1,[55,56,57],3]])
to_select = numpy.array([1,3]*3).reshape(3,3) # three rows of [1,3]
selected_indices = data == to_select
# array([[ True,True,True],# [False,False,False],# [ True,True]],dtype=bool)
data = numpy.where(selected_indices,[4,5,6],data)
# array([[4,# [55,# [4,6]])
# done in one step,but perhaps not very clear as to its intent
data = numpy.where(data == numpy.array([1,3),data)
numpy.where通过选择第二个参数(如果为true)和第三个参数(如果为false)进行工作.
您可以使用where从3种不同类型的数据中进行选择.第一个是与selected_indices具有相同形状的数组,第二个只是一个值(如2或7).第一种是最复杂的,可以是可以与selected_indices广播成相同形状的形状.在这种情况下,我们提供了[1,它们可以堆叠在一起以获得形状为3×3的阵列.