通过两点经纬度求在地球上的距离

Haversine公式

Π 180 ∗ d e g = r a d \frac{\Pi}{180}* deg = rad 180Πdeg=rad

h a v e r s i n ( θ ) = s i n 2 ( θ 2 ) = 1 − c o s ( θ ) 2 haversin(\theta) = sin^2(\frac{\theta}{2}) = \frac{1-cos(\theta)}{2} haversin(θ)=sin2(2θ)=21cos(θ)

h a v ( d r ) = h a v ( φ 1 − φ 2 ) + c o s ( φ 1 ) c o s ( φ 2 ) h a v ( λ 1 − λ 2 ) hav(\frac{d}{r}) = hav(\varphi_1 - \varphi_2) + cos(\varphi_1)cos(\varphi_2)hav(\lambda_1 - \lambda_2) hav(rd)=hav(φ1φ2)+cos(φ1)cos(φ2)hav(λ1λ2)

d = 2 ∗ r ∗ a r c s i n ( s i n 2 ( φ 1 − φ 2 2 ) + c o s ( φ 1 ) c o s ( φ 2 ) s i n 2 ( λ 1 − λ 2 2 ) ) d = 2*r*arcsin(\sqrt{ sin^2(\frac{\varphi_1 - \varphi_2}{2} ) + cos(\varphi_1)cos(\varphi_2) sin^2(\frac{\lambda_1 - \lambda_2}{2} ) }) d=2rarcsin(sin2(2φ1φ2)+cos(φ1)cos(φ2)sin2(2λ1λ2) )

d is the distance between two points
r is the radius of the earth
φ 1 φ 2 {\displaystyle \varphi _{1}\varphi _{2}} φ1φ2 is the latitude at point 1 and the latitude at point 2
λ 1 λ 2 {\displaystyle \lambda _{1}\lambda _{2}} λ1λ2 is the Longitude at point 1 and longitude at point 2

python 代码实现

ng1,lat1 为开始点的经纬度
ng2,lat2 为结束点的经纬度

def geodistance(lng1,lat1,lng2,lat2):
    #lng1,lat1,lng2,lat2 = (120.12802999999997,30.28708,115.86572000000001,28.7427)
    lng1, lat1, lng2, lat2 = map(radians, [float(lng1), float(lat1), float(lng2), float(lat2)]) # 经纬度转换成弧度
    dlon=lng2-lng1
    dlat=lat2-lat1
    a=sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
    distance=2*asin(sqrt(a))*6371*1000 # 地球平均半径,6371km
    distance=round(distance/1000,3)
    return distance

Reference

公式参考
代码参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值