matlab调用kmeans_matlab做聚类分析(k-means)

本文介绍了如何在Matlab中使用Kmeans函数进行聚类分析,包括基本用法、输出参数、可选参数如距离测度、初始质心选择方法和重复次数。并提供了生成随机数据进行3类聚类的代码实例。
摘要由CSDN通过智能技术生成

基本函数使用方法:Idx=Kmeans(X,K)

对矩阵X进行分类且为K类;假设X为m*n矩阵,n为特征数,m为样本数目,则输出参数Idx为m个整数,且属于1到K之间的数。[Idx,C]=Kmeans(X,K)

对矩阵X进行分类且为K类;假设X为m*n矩阵,n为特征数,m为样本数目,则输出参数Idx为m个整数,且属于1到K之间的数。 并且返回聚类中心C,C为k*n的矩阵。[Idc,C,sumD]=Kmeans(X,K)

对矩阵X进行分类且为K类;假设X为m*n矩阵,n为特征数,m为样本数目,则输出参数Idx为m个整数,且属于1到K之间的数;sumD为1*K的和向量,存储的是类内所有点与该类质心点距离之和;[Idx,C,sumD,D]=Kmeans(X,K)

对矩阵X进行分类且为K类;假设X为m*n矩阵,n为特征数,m为样本数目,则输出参数Idx为m个整数,且属于1到K之间的数;sumD为1*K的和向量,存储的是类内所有点与该类质心点距离之和;D为m*K的矩阵,存储的是每个点与所有质心的距离[┈]=Kmeans(┈,’Param1’,’Val1’,’Param2’,’Val2’,┈) 有很多可选参数:

其中参数Param1、Param2等,主要可以设置为如下:

2、’Distance’---距离测度:

‘sqEuclidean’---欧氏距离;

‘cityblock’---绝对误差和;

‘cosine’---余弦距离&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值