请至PC端网页下载本课程代码课件及数据。
文本挖掘(TM),又称自然语言处理(NLP),是AI时代炙手可热的数据分析挖掘前沿领域,其所涉及的人机对话系统,推荐算法,文本分类等技术在BAT等企业中都得到广泛应用。
本课程将使用经典武侠小说、大众点评抓取结果、微博语料数据等多个实际案例进行教学。
本次课程将会从基本的分词、词袋模型、分布式表示等概念开始,多面介绍文本挖掘技术的各个方面,特别会针对目前最热的word2vec,gensim 等结合实际案例进行学习,帮助学员直接升级至业界技术前沿。
学习完本课程后,学员将能够独立使用Python环境完成中文文本挖掘的各种工作。
本课程已全部更新完毕,未来将根据方法学的**进展做不定期更新。
【课程长度】
总时长:约11小时
【学员基础】
学员需要懂得Python语言的基本编程知识。
建议学员事先学习本系列课程中的Pandas课程,本课程中的数据管理将会用到Pandas的相关知识和操作。
【课程大纲】
第1章:文本挖掘概述
第2章:磨刀不误砍柴工
第3章:分词
第4章:词云展示
第5章:文档信息的向量化
第6章:关键词提取
第7章:抽取文本主题
第8章:文本相似度
第9章:文档分类
第10章:情感分析
第10章:自动摘要
第11章:自动写作