- 博客(120)
- 收藏
- 关注
翻译 OpenAI CEO Sam Altman《如何提高工作效率》
OpenAI CEO Sam Altman 在 5 年前写的《如何提高工作效率》的文章我认为自己至少比普通人效率更高一点,人们有时也会问我提高效率的秘诀,所以我决定写一篇文章,谈谈我对效率的理解。「复利」是金融领域的一个概念,但同样在职场上适用。每天提高一点点的效率,50年后的复利增长会让你大吃一惊。所以,现在花费一些时间了解如何提升效率是十分值得的。如果你每天能比别人多做10%的事情,精进1%,复利带来的积极效果将使你脱颖而出。
2023-08-09 10:42:20 453
原创 3个月快速入门LoRa物联网传感器开发
LoRaWAN是LoRa联盟制定的LPWAN规范,用于连接无线电频率的物联网设备。LoRaWAN网络由端节点、网关、网络服务 three部分组成。端节点通过LoRa无线电连接网关,网关通过IP连接网络服务器。LoRaWAN网络拓扑有星型、网状等。星型结构最常见。理论结合实践,3个月可掌握LoRa开发主要技能。要多动手编程、调试、交流学习。
2023-08-08 22:20:12 1576
原创 如何训练最终机器学习模型 How to Train a Final Machine Learning Model
最终的机器学习模型是用于对新数据进行预测的模型。也就是说,给定输入数据的新示例,您希望使用该模型来预测预期输出。这可能是分类(分配标签)或回归(实际值)。例如,照片是狗还是猫的照片,或者明天的估计销售数量。数据:您拥有的历史数据。时间:您必须花在项目上的时间。过程:数据准备步骤、算法或算法以及所选的算法配置。在项目中,您可以收集数据,花费您拥有的时间,并发现数据准备过程、要使用的算法以及如何配置它。最终模型是这个过程的顶峰,你为了开始实际做出预测而寻求的目的。
2023-08-01 20:51:01 660
原创 数字笔记:构建第二个大脑 作者:Tiago Forte(书籍摘要)Digital Notetaking: Building a Second Brain by Tiago Forte
把你的第二大脑想象成世界上最好的私人助理。“把它想象成学习笔记本、个人日记和新想法的素描本的组合。它是一种多用途工具,可以适应您随着时间的推移不断变化的需求。“你的第二大脑总是开启,有完美的记忆力,可以扩展到任何大小。你越是将捕获、组织和提炼的工作外包和委托给技术,你就越有时间和精力来表达自我,而这只有你能做到。
2023-07-26 16:31:38 917
翻译 译·如何做出伟大的工作
如果你收集了很多不同领域内做出卓越工作的技巧列表,那么它们的交集会是什么样子呢?我决定通过实践来寻找答案。我的部分目标是创建一份能被任何领域的工作者使用的指南。但我也对这些技巧交集的形状感到好奇。这个尝试展示出,它确实有一个明确的形状,而不仅仅是一个贴着“努力工作”标签的点。以下的秘诀假定你有非常高的抱负。首先,你要决定从事什么工作。你选择的工作需要具备三个品质:你有天生的适应能力,你对它有深厚的兴趣,同时它还要能提供展现你伟大工作的空间。实际上,你不必过于担心第三个条件。雄心壮志的人往往在这方面过于保守。
2023-07-21 09:21:52 389 1
原创 详细介绍Matlab中线性规划算法的使用
Matlab中提供了用于线性规划的优化工具箱,其中包含了多种算法,如单纯形法、内点法等。线性规划是一种优化问题,旨在找到一组变量的最佳值,以最大化或最小化线性目标函数,同时满足一组线性约束条件。根据上述实例,我们可以使用Matlab中的线性规划算法来解决各种实际问题,例如生产计划、资源分配等。我们的目标是最大化总利润,即最大化销售收入减去生产成本。下面将详细介绍Matlab中线性规划算法的使用,并给出一个著名的实例。首先,定义目标函数的系数向量。,最优解对应的目标函数值。是目标函数的系数向量,
2023-07-20 12:25:33 1080
原创 详细介绍MATLAB中的图论算法
MATLAB是一种功能强大的编程语言和环境,提供了许多用于图论算法的工具和函数。在MATLAB中,我们可以使用图论算法来解决各种问题,如最短路径问题、最小生成树问题、最大流问题等。以上是MATLAB中图论算法的简要介绍和一个最著名的实例——Dijkstra算法的具体代码。MATLAB提供了丰富的图论算法函数和工具,可以帮助解决各种图论问题。你可以根据具体的应用场景选择适合的算法和函数来解决问题。下面将介绍MATLAB中的图论算法,并给出一个最著名的实例——Dijkstra算法的具体代码。
2023-07-18 20:26:06 1225
原创 MATLAB算法-数据挖掘算法详解,
Matlab是一种功能强大的数据分析和数据挖掘工具,提供了丰富的数据挖掘算法和函数。下面将介绍一些最著名的数据挖掘算法,并提供相应的代码示例。上述代码中,首先使用randn函数生成示例数据,其中包含两个簇。然后使用kmeans函数进行K均值聚类,将数据划分为两个簇,并返回每个样本所属的簇的索引和簇的中心点。最后使用gscatter函数可视化聚类结果,将每个样本按照所属簇进行颜色标记,并绘制簇的中心点。上述代码中,首先使用load函数导入鸢尾花数据集,其中包含了花瓣长度和花瓣宽度的测量值以及对应的鸢尾花品种。
2023-07-17 16:23:11 751
原创 详细介绍matlab使用支持向量机(SVM)预测股票市场趋势的实例
股票市场的趋势预测一直是投资者和交易员关注的重要问题之一。支持向量机(SVM)作为一种强大的机器学习算法,被广泛应用于股票市场趋势预测。本实例将介绍如何使用SVM来预测股票市场的涨跌趋势,并提供一个MATLAB代码示例。
2023-07-16 20:28:43 1051
原创 matlab主成分分析算法在人脸识别的具体应用
根据特征值的大小,我们可以选择保留最大的K个特征值和对应的特征向量,从而实现数据的降维。主成分析(Principal Component Analysis,简称PCA)是一种常用的降维算法,可以将高维数据转化为低维数据,同时保留原始数据的最重要特征。PCA算法在人脸识别中有广泛的应用,可以提取人脸图像中的主要特征,从而实现人脸的识别和分类。最后,给定一张测试人脸图像,将其投影到主成分空间,并计算与所有样本的欧氏距离,找到最相似的人脸。假设我们有一组人脸图像数据,每个人脸图像的大小为m*n,共有N个样本。
2023-07-16 20:27:54 335
原创 How to Make Your Writing Stand Out From AI 如何让你的写作从人工智能中脱颖而出
多亏了 ChatGPT 等令人惊叹的工具,如果您是人类作家,现在有大量写得很好、功能强大且有用的写作可以与之竞争。这意味着您的写作需要将自己与这种新型内容区分开来。这是如何做到这一点的。
2023-07-12 18:12:48 409
原创 8 Surprising Things You Can Do With ChatGPT 你可以用 ChatGPT 做的 8 件令人惊讶的事情
对 ChatGPT 不是很熟悉?不用担心。它和类似的AI引擎仍然是相当新的。您可以深入了解 ChatGPT,我们甚至可以帮助您学习如何使用 ChatGPT,但在我们介绍一些使用 AI 聊天服务的新方法之前,这里有一个快速摘要。ChatGPT 是一种算法 AI 聊天系统,该系统经过大量基于 Internet 的资源(网站、论坛、文档等)的训练,以提供类似人类的查询响应。而不仅仅是简单的“你今天过得怎么样?
2023-07-12 18:06:29 440
原创 What Is the Character Limit for ChatGPT? 聊天GPT的字符限制是多少?
当涉及到ChatGPT上的文本查询时,OpenAI施加了两种不同的限制。
2023-07-11 15:35:35 1743
原创 Tablet vs. eReader: Which Is Better for Ebooks? 平板电脑与电子阅读器:哪个更适合电子书?
如果您只想拥有尽可能接近纸质书的东西,那么电子阅读器是最好的。但是,如果您需要更多的东西,平板电脑作为也可以阅读电子书的通用设备更有意义。与这些流行设备的早期相比,现代平板电脑的屏幕和电池寿命有了很大的改善。然而,电子阅读器也没有停滞不前,如果你喜欢阅读电子书,那么关于哪个是最好的选择,存在一个合理的困境。
2023-07-08 23:20:40 450
原创 Disposable vs. Rechargeable Batteries: Which Is Better? 一次性电池与可充电电池:哪个更好?
一次性电池的前期成本较低,在低耗电设备中可能使用寿命更长。然而,从长远来看,尽管初始成本较高,但可充电电池更具成本效益。它们可减少电子废物,并在高耗电设备中具有更长的每次充电寿命。这是一个常见的难题;一次性电池还是充电电池?一个既便宜又容易,但从长远来看可能更贵,而另一个一开始要花一分钱,但可能会变成更好的交易。
2023-07-07 21:43:18 268
原创 【Python beautifulsoup】详细介绍beautifulsoup库的使用方法,包括安装方式、基本用法、常用方法和技巧,以及结合lxml和parsel的具体使用场景和区别。
Python beautifulsoup库是一个强大的Web抓取和解析库,它提供了丰富的功能和简单易用的API,可以帮助我们处理HTML和XML文档,从中提取数据,进行数据清洗和处理。beautifulsoup库基于Python标准库中的html.parser模块,同时还可以与第三方解析库lxml和parsel配合使用,提供更高效和灵活的解析方式。本文将详细介绍beautifulsoup库的使用方法,包括安装方式、基本用法、常用方法和技巧,以及结合lxml和parsel的具体使用场景和区别。
2023-07-06 21:52:05 7280 1
原创 如何在iPhone上用ChatGPT替换Siri
要在 iPhone 或 iPad 上将 ChatGPT 与 Siri 配合使用,请获取 OpenAI API 密钥并下载 ChatGPT Siri 快捷方式。在快捷方式设置中输入您的 API 密钥并选择您要使用的 GPT 模型,然后点击“添加快捷方式”。先手动触发快捷指令以允许权限,然后开始让 Siri 触发快捷指令。Siri可以控制你的iPhone,但它远没有ChatGPT那么强大。
2023-06-17 21:40:01 3964
原创 Apple Vision Pro的价格并没有看起来那么疯狂
当苹果宣布其突破性的新型混合现实耳机Vision Pro的价格时,全世界的下巴集体下降。3,499 美元的巨额价格并不适合所有人,但如果我们仔细观察,真的那么不合理吗?
2023-06-15 19:51:00 321
原创 6个ChatGPT4的最佳用途
您可以在 GPT-4 中使用简短的提示来生成长而详细的提示,然后可以与 GPT-3.5 Turbo 一起使用以获得更精确和准确的响应。您可以使用 GPT-4 的高级语言理解来验证和改进 GPT-3.5 Turbo 生成的文本。您可以通过 GPT-3.5 运行 GPT-4 Turbo 生成的内容来优化输出,并确保其符合更高的质量标准。您可以使用 GPT 3.5 Turbo 生成大量草稿文本,然后将其输入 ChatGPT 中的 GPT-4,并提示以某种方式重写或修改它。然后等待更智能的AI模型发挥其魔力。
2023-06-14 14:32:53 42824 7
原创 【Python ORM】零基础也能轻松掌握的学习路线与参考资料
Python 中常用的 orm 框架有多种,其中比较常见的有 Django ORM、SQLAlchemy 和 Peewee 等,这些框架都有自己的特点和优缺点,使用时需要选择适合自己的框架。orm 基础概念:学习 Python orm 前,需要了解 orm 的基本概念和原理,包括 orm 是什么、为什么需要 orm、orm 的实现方式以及 orm 的优缺点等。SQLAlchemy ORM 官方文档:https://docs.sqlalchemy.org/en/14/orm/index.html。
2023-06-13 22:32:45 266
原创 【Python 生成器与迭代器】零基础也能轻松掌握的学习路线与参考资料
迭代器(Iterator)是Python中的一个重要概念,它是一种特殊的对象,可以使用迭代协议(Iterator Protocol)中的next()函数来访问其元素。Python中常见的生成器和迭代器包括:生成器表达式、迭代器函数、生成器函数等。生成器(Generator)是Python中另一个重要的概念,它是一种特殊的迭代器,可以使用yield来定义生成器函数。生成器可以使用生成器函数生成,而生成器函数是一种特殊的函数,可以使用yield关键字来暂停函数的执行,并在需要生成下一个值时恢复执行。
2023-06-12 20:41:25 258
原创 【Python plotly】零基础也能轻松掌握的学习路线与参考资料
Python是一种易于学习的语言,但是在使用Python plotly之前,需要掌握Python的基础语法,并且最好掌握Numpy、Pandas库的使用,这些都是Python plotly绘图过程中的基础。(2)Plotly图表样式美化:https://plotly.com/python/styling-plotly-express/(1)在线练习:https://plotly.com/python/plotly-fundamentals/(1)Python基础教程(第二版)(3)Pandas官方文档。
2023-06-11 21:27:19 392
原创 【Python opencv 】零基础也能轻松掌握的学习路线与参考资料
图像缩放使用cv2.resize()方法,图像旋转使用cv2.getRotationMatrix2D()和cv2.warpAffine()方法,图像亮度调整使用cv2.addWeighted()方法,边缘检测使用cv2.Canny()方法。学习了Python的基础和Numpy以后,需要进一步了解图像处理和计算机视觉的基础知识,比如图像加载、灰度化、二值化、缩放、旋转、亮度调整、边缘检测、特征提取和图像分割等,这些都是Python opencv编程需要用到的基础技术。
2023-06-10 21:59:58 632
原创 【Python 匿名函数】零基础也能轻松掌握的学习路线与参考资料
在 Python 中,我们可以使用 map() 函数映射一系列的元素,通常情况下我们会使用 def 函数定义一个 map 函数。在 Python 中,我们可以使用 sort() 函数对列表进行排序,其中 key 参数可以传入一个函数作为排序的关键字。在实际编程中,我们经常遇到需要把函数当做参数传进另一个函数里处理的情况,这时可以使用 lambda 函数进行简单的处理。经过以上的应用实例,我们可以看到,Python 匿名函数可以用于排序过程、过滤列表、映射序列等场合,都特别适合使用。
2023-06-09 22:16:28 277
原创 【Python 继承和多态】零基础也能轻松掌握的学习路线与参考资料
抽象类是一种不能被实例化的类,包含了至少一个抽象方法,它的主要作用是为它的子类提供一个公共的接口,以便它们可以更容易地被实现。在学习完 Python 继承和多态之后,您将能够更好地理解面向对象编程的概念,为您的 Python 编程提供更好的支持。如果您要在一个对象和一个集合对象中调用相同的方法,那么这个方法会根据被调用的对象的不同而有不同的行为。如果您有许多类,它们都需要执行一些相同的行为,那么您可以将这些行为提取到一个父类中,并在子类中重写父类的方法。在子类中定义的方法会覆盖掉父类中的同名方法。
2023-06-08 21:33:43 196
原创 【Python 类方法和静态方法】零基础也能轻松掌握的学习路线与参考资料
Python类方法和静态方法是两种常见的方法,用于组织代码和执行与类相关的任务。学习这些方法需要掌握Python类的基本知识、装饰器、类方法和静态方法的工作原理和用法以及其他学习资源。在实践中,可以使用类方法访问类级别的属性和方法,使用静态方法执行与类相关的任务,以及使用类方法或静态方法代替全局函数。类方法是绑定到类而不是实例的方法,它们可以在实例和类上运行。在学习类方法时,需要掌握如何定义类方法、如何在类和实例上调用它们以及如何访问类级别的属性和方法。在Python中,类方法是绑定到类而不是实例的方法。
2023-06-07 21:21:23 184
原创 【Python 私有变量和私有方法】零基础也能轻松掌握的学习路线与参考资料
在public_method方法中,我们通过self.__private_method()和self.__private_var来访问私有方法和私有变量。私有变量和私有方法是指只能在类内部访问的变量和方法。在本文中,我们将介绍Python私有变量和私有方法的学习路线,并给出参考资料和优秀实践。在使用类的属性和方法时,尽量不要使用_类名__属性名和_类名__方法名这种方式,因为这样会破坏私有性和封装性。在Python中,当我们需要定义私有变量和私有方法时,一般是为了保护内部状态和实现封装特性。
2023-06-07 21:20:34 248
原创 【Python XML】零基础也能轻松掌握的学习路线与参考资料
掌握Python Xml的学习路线之后,需要处理XML文件,在Python中,读写XML文件可以通过两种方式:一是使用DOM解析器,将文件内容转换为节点树,再用DOM API来操作节点,这种方式适合读写小型XML文件;XPath是一种在XML中定位元素和属性的语言,它可以说是XML的查询语言,XPath是通用的,可以用在HTML,XML和Blu-Ray Disc Profile的几个标准中。XSLT是一种风格表和样式表的语言,它用来转换XML文档,将格式化的XML文档转换为另一种格式的XML文档。
2023-06-06 20:42:38 232
原创 【Python TDD和BDD】零基础也能轻松掌握的学习路线与参考资料
TDD通过先写测试代码,再编写生产代码的方式,使得开发者可以在开发过程中确保代码质量和正确性,并在进行重构时减少错误。Python TDD和BDD是软件开发过程中的重要技术和方法,本文介绍了学习这些技术的路线和方法。持续集成是一项重要的技术,可以自动构建、测试和部署应用程序,从而帮助确保代码质量和正确性。在学习TDD的过程中,首先要学习的是编写测试代码的技巧和规范。在学习BDD的过程中,需要注意的是应用程序的需求和行为。因此,在学习完测试框架和测试用例的编写之后,需要深入理解业务需求和应用程序的行为。
2023-06-06 20:40:48 569 1
原创 【Python 二进制和十六进制】零基础也能轻松掌握的学习路线与参考资料
在计算机中,二进制和十六进制是两种常用的表示数据的方式。二进制只有两个数字0和1,表示一个比特(bit),在实际的计算机程序中,常用八个比特表示一个字节(byte)。在实际编程中,可能需要对二进制和十六进制数据进行操作,包括读取、写入、解析等。在Python中,可以使用bin()和hex()函数将十进制转换为二进制和十六进制。如果想将二进制或十六进制转换为十进制,可以使用int()函数。2.编写一个函数,将一个十六进制字符串转换为二进制字符串。3.编写一个函数,将一个二进制字符串转换为十六进制字符串。
2023-06-05 09:12:52 312
原创 【Python 异步编程】零基础也能轻松掌握的学习路线与参考资料
事件循环在Python中是基于asyncio库实现的,它是异步应用程序的核心。协程是异步编程的核心概念,它可以看作是一种轻量级的线程,由生成器实现,可以在运行时暂停和恢复,这样就能够让程序更加高效地使用CPU的时间。异步编程是现代编程中必不可少的一种技术,Python中的异步编程技巧越来越成熟,开发者可以使用Python简洁、高效地实现异步编程应用,提高程序的性能和并发处理能力。(2)非阻塞I/O。在执行I/O操作时,异步编程可以不用等待其结果,而是立即返回并执行其他任务,等到I/O操作完成后再继续执行。
2023-06-05 09:08:09 106
原创 【Python SMTP/POP3/IMAP】零基础也能轻松掌握的学习路线与参考资料
学习Python SMTP/POP3/IMAP需要了解相关协议的基本操作,如连接服务器、登录账号、获取邮件列表、获取指定邮件、发送邮件等。使用Python查看邮件的基本流程是:连接邮件服务器、登录账号、获取邮件列表、获取指定邮件,在控制台或文件显示邮件内容。使用Python接收邮件的基本流程是:连接邮件服务器、登录账号、获取邮件列表、获取指定邮件、删除邮件。使用Python发送邮件的基本流程是:连接邮件服务器、登录账号、构造邮件内容、发送邮件。文档内容比较全面,可以作为学习参考。Python邮件处理库。
2023-06-05 09:06:47 626
原创 【Python FTP/SFTP】零基础也能轻松掌握的学习路线与参考资料
学习Python FTP模块时,需要了解ftplib的基本函数和用法,如FTP()、login()、storbinary()、retrbinary()等函数的使用方法。Python FTP/SFTP是Python语言的两种常用的文件传输协议。这本书是讲述Python网络编程的实用指南,其中讲述了FTP/SFTP模块的用法及实践经验,适合已经掌握Python网络编程基础的读者学习。Paramiko是Python中常用的SFTP模块,官方提供了详细的文档和示例,非常适合SFTP的学习和实践。
2023-06-04 17:02:18 479
原创 【Python Bokeh】零基础也能轻松掌握的学习路线与参考资料
最后值得一提的就是优秀的实践案例:https://github.com/bokeh/bokeh/tree/branch-2.4/examples/app/life 与 https://github.com/bokeh/bokeh/tree/branch-2.4/examples/app/movies 这两个python Bokeh实践。二者展现出python Bokeh的数据可视化魅力与实际操作案例,通过这些实际操作可以让你更好的了解python使用过程以及解决过程中的问题和思路,推荐大家学习参考。
2023-06-04 17:00:30 200
原创 【Python 文本分析】零基础也能轻松掌握的学习路线与参考资料
它包括了很多经典的文本分析算法,如词频统计、词性标注、命名实体识别、情感分析等。TextBlob 是一个基于 NLTK 的简单易用的文本处理工具,它能够进行分句、分词、词性标注、情感分析等。NLTK 基于 Python 实现,并且涉及了很多基本的自然语言处理原理,包括分词、词性标注、命名实体识别、关键词提取、情感分析等。TextBlob 基于 NLTK 实现,所以它通过了解分词、词性标注、情感分析等基本原理,来更加深入了解 TextBlob 的使用方法。(2)NLTK 下载。
2023-06-03 14:46:32 263
原创 【Python 文本挖掘】零基础也能轻松掌握的学习路线与参考资料
Python文本挖掘是利用Python语言和相关文本挖掘工具对大量文本数据进行分析和挖掘的过程。学习Python文本挖掘需要掌握Python编程基础、数据分析和可视化、自然语言处理、机器学习等知识。以上是Python文本挖掘的学习路线和参考资料,实践时需要积极寻找数据集并注重实际应用,只有不断实践才能使结果更加准确。此课程介绍了如何使用Python进行文本挖掘和机器学习,并演示了如何利用这些工具进行实际数据分析。此书涵盖了多种机器学习算法和技术,包括分类、聚类、回归、集成学习等。
2023-06-03 14:43:50 304
原创 【Python C扩展】零基础也能轻松掌握的学习路线与参考资料
Python C扩展的学习路径包括C语言基础、Python语言、Python C API等多个方面,同时还需要通过实际项目来巩固学习成果。Python C扩展是将Python语言与C语言相结合,最大限度地利用C语言的高性能和Python语言的灵活性,使Python程序获得更高的运行效率。Python C API是Python提供的一组C语言API,可以在C语言中调用Python解释器,实现Python与C语言的相互调用。学习Python C扩展前,需要掌握C语言基本语法、指针、内存管理等基础知识。
2023-06-02 09:43:05 444
原创 【Python NLTK】零基础也能轻松掌握的学习路线与参考资料
以上就是 Python NLTK 的学习路线和相关资料,从基础知识到实际操作,希望可以帮助到想要学习自然语言处理的同学, NLTK 是 Python 中为数不多的自然语言处理库之一,可以帮助我们更好地预处理和处理文本数据,同时也可以应用于分类、相似度计算等任务中,是数据科学家和机器学习工程师不可或缺的工具之一。Python文件读写操作:https://www.runoob.com/python/python-files-io.html。
2023-06-02 09:41:03 336
原创 【Python 自然语言处理(NLP)】零基础也能轻松掌握的学习路线与参考资料
了解基本的机器学习算法和常用的机器学习库是 Python 自然语言处理的必要条件。在机器学习领域,掌握一些基本的概念如监督学习、无监督学习、半监督学习、回归分析、分类和聚类算法等。另外,需要学习和使用常用的机器学习库,如Scikit-learn,TensorFlow,PyTorch,Keras等。深度学习的应用已经渗透到了 NLP 的各个方面。同时,需要学习和使用深度学习库,如TensorFlow,PyTorch,Keras等。因为 NLP 涉及到文本处理、语言模型、统计学习、机器学习以及深度学习等方面。
2023-06-02 09:40:26 849
原创 【Python wxPython】零基础也能轻松掌握的学习路线与参考资料
在这方面,初学者可以参考一些Python入门教程,比如《Python入门教程》(https://www.runoob.com/python/python-tutorial.html)、《Python基础教程》(https://book.douban.com/subject/27028517/)。本文从基础知识、入门、进阶和优秀实践四个方面介绍了学习wxPython的路线,并且提供了丰富的参考资料和优秀实践,希望对读者有所启发。这时需要了解一些高级的概念,比如自定义控件、绘图、数据绑定、多线程和网络编程等。
2023-06-01 22:30:09 595
同步辐射光源机制、特性及在科研生产中的广泛应用.pdf
2023-08-09
室温超导研究现状、意义与实现前景展望.pdf
2023-08-09
2020销年电风扇市场总结报告.pdf
2023-08-09
超导学习指南 本指南概述了超导的基本概念、微观机制、类型和关键温度等理论知识,并介绍了超导在强磁场、精密探测等领域的主要应用
2023-08-09
3个月快速入门基于BERT的机器翻译模型开发指南.pdf
2023-08-09
基于BERT的机器翻译模型开发详解.pdf
2023-08-09
基于BERT的端到端语音识别模型开发指南.pdf
2023-08-08
使用BERT进行文档摘要模型开发的详细指南.pdf
2023-08-08
基于BERT的推荐系统模型开发详解.pdf
2023-08-08
基于BERT的神经机器翻译模型开发详解.pdf
2023-08-08
快速入门LoRa GPS Tracker开发指南.pdf
2023-08-08
快速入门LoRa Mesh网络.pdf
2023-08-08
快速入门LoRa天气站.pdf
2023-08-08
3个月快速入门LoRa物联网传感器开发.pdf
2023-08-08
如何通过5个小项目在三个月内精通Python爬虫.pdf
2023-08-04
如何通过三个小项目入门Python爬虫.pdf
2023-08-04
如何通过三个小项目在三个月内入门LoRa.pdf
2023-08-04
如何通过4个小项目在三个月内精通C++.pdf
2023-08-04
如何对狗和猫的照片进行分类(准确率为97%)
2023-08-02
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人