imblearn库 怎样安装_Py之imblearn:imblearn/imbalanced-learn库的简介、安装、使用方法之详细攻略...

imblearn/imbalanced-learn是一个用于处理类别不平衡问题的Python库,与scikit-learn兼容。本文档介绍了imblearn的安装方法,包括pip和conda安装,并概述了其重采样技术,如欠采样、过采样和组合方法,以及如何在分类中应用这些技术以改善决策边界。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Py之imblearn:imblearn/imbalanced-learn库的简介、安装、使用方法之详细攻略

目录

imblearn/imbalanced-learn库的简介

imblearn/imbalanced-learn是一个python包,它提供了许多重采样技术,常用于显示强烈类间不平衡的数据集中。它与scikit learn兼容,是 scikit-learn-contrib 项目的一部分。

在python3.6+下测试了imbalanced-learn。依赖性要求基于上一个scikit学习版本:

scipy(>=0.19.1)

numpy(>=1.13.3)

scikit-learn(>=0.22)

joblib(>=0.11)

keras 2 (optional)

tensorflow (optional)

imblearn/imbalanced-learn库的安装

pip install imblearn

pip install imbalanced-learn

pip install -U imbalanced-learn

conda install -c conda-forge imbalanced-learn

imblearn/imbalanced-learn库的使用方法

大多数分类算法只有在每个类的样本数量大致相同的情况下才能达到最优。高度倾斜的数据集,其中少数被一个或多个类大大超过,已经证明是一个挑战,但同时变得越来越普遍。

解决这个问题的一种方法是通过重新采样数据集来抵消这种不平衡,希望得到一个比其他方法更健壮和公平的决策边界。

Re-sampling techniques are divided in two categories:

Under-sampling the majority class(es).

Over-sampling the minority class.

Combining over- and under-sampling.

Create ensemble balanced sets.

Below is a list of the methods currently implemented in this module.

Under-sampling

Random majority under-sampling with replacement

Extraction of majority-minority Tomek links [1]

Under-sampling with Cluster Centroids

NearMiss-(1 & 2 & 3) [2]

Condensed Nearest Neighbour [3]

One-Sided Selection [4]

Neighboorhood Cleaning Rule [5]

Edited Nearest Neighbours [6]

Instance Hardness Threshold [7]

Repeated Edited Nearest Neighbours [14]

AllKNN [14]

Over-sampling

Random minority over-sampling with replacement

SMOTE - Synthetic Minority Over-sampling Technique [8]

SMOTENC - SMOTE for Nominal Continuous [8]

bSMOTE(1 & 2) - Borderline SMOTE of types 1 and 2 [9]

SVM SMOTE - Support Vectors SMOTE [10]

ADASYN - Adaptive synthetic sampling approach for imbalanced learning [15]

KMeans-SMOTE [17]

Over-sampling followed by under-sampling

SMOTE + Tomek links [12]

SMOTE + ENN [11]

Ensemble classifier using samplers internally

Easy Ensemble classifier [13]

Balanced Random Forest [16]

Balanced Bagging

RUSBoost [18]

Mini-batch resampling for Keras and Tensorflow

### 解决 `pip` 安装 `imbalanced-learn` 包时提示无法找到满足要求的版本 当遇到 `Could not find a version that satisfies the requirement` 错误时,通常是因为网络连接问题、Python 版本不匹配或依赖项冲突等原因造成的。以下是几种解决方案: #### 使用国内镜像源安装 由于国外服务器可能因网络原因导致下载失败,可以尝试使用国内镜像源来加速下载并解决问题。 ```bash pip install imbalanced-learn -i https://pypi.tuna.tsinghua.edu.cn/simple --trusted-host pypi.tuna.tsinghua.edu.cn ``` 此方法通过清华大学开源软件镜像站获取资源,能够有效提高下载速度并减少超时风险[^3]。 #### 升级 `pip` 工具 有时旧版 `pip` 可能存在一些已知的问题,升级至最新稳定版本有助于解决此类异常情况。 ```bash python -m pip install --upgrade pip ``` 完成更新后再重新执行上述命令尝试安装目标文件。 #### 检查 Python 和依赖环境配置 确保当前使用Python 版本以及相关科学计算类(如 NumPy, SciPy 等)均处于适配范围内;对于 Anaconda 用户来说,则建议优先考虑利用 Conda 渠道来进行操作: ```bash conda update conda conda create -n myenv python=3.x # 创建新虚拟环境 (可选) conda activate myenv # 启动指定环境 (如果创建了的话) conda install -c conda-forge imbalanced-learn ``` 这里指定了来自社区贡献者维护的 `conda-forge` 频道作为数据来源之一,从而增加了成功安装的可能性[^2]。 #### 处理权限不足引发的错误 针对 Windows 平台下可能出现的 “拒绝访问” 类型报错信息,可以通过添加 `--user imbalanced-learn ``` 另外,在某些特殊情况下也可以尝试关闭杀毒软件实时防护功能再做测试,不过这一步骤需谨慎对待以免影响系统安全性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值