M2Det
M2Det最大的创新的提出了MLFPN。
M2Det的模型结构
M2Det使用主干网络+MLFPN来提取图像特征,然后采用类似SSD的方式预测密集的包围框和类别得分,通过NMS得到最后的检测结果。
MLFPN
如上图所示,MLFPN主要有3个模块组成:
1)特征融合模块FFM。
2)细化U型模块TUM。
3)尺度特征聚合模块SFAM。
首先, FFMv1对主干网络提取到的浅层和深层特征进行融合,得到base feature。其次,堆叠多个TUM和FFMv2,每个TUM可以产生多个不同scale的feature map,每个FFMv2融合base feature和上一个TUM的输出,并给到下一个TUM作为输入(更高level)。每个level的输出如下公式所述;
[ x 1 l , x 2 l , ⋯ , x i l ] = { T l ( X b a s e ) , if l = 1 T l ( f ( X b a s