M2Det

M2Det是一种深度学习目标检测模型,它引入了MLFPN,由FFM、TUM和SFAM三个模块组成。FFM融合不同层级特征,TUM采用U型结构提供多尺度特征,而SFAM通过通道级注意力聚合多级特征。M2Det在SSD基础上预测密集边界框和类别得分,适用于计算机视觉任务。
摘要由CSDN通过智能技术生成

M2Det

M2Det最大的创新的提出了MLFPN。

M2Det的模型结构

在这里插入图片描述
M2Det使用主干网络+MLFPN来提取图像特征,然后采用类似SSD的方式预测密集的包围框和类别得分,通过NMS得到最后的检测结果。

MLFPN

如上图所示,MLFPN主要有3个模块组成:
1)特征融合模块FFM。
2)细化U型模块TUM。
3)尺度特征聚合模块SFAM。
首先, FFMv1对主干网络提取到的浅层和深层特征进行融合,得到base feature。其次,堆叠多个TUM和FFMv2,每个TUM可以产生多个不同scale的feature map,每个FFMv2融合base feature和上一个TUM的输出,并给到下一个TUM作为输入(更高level)。每个level的输出如下公式所述;
[ x 1 l , x 2 l , ⋯   , x i l ] = { T l ( X b a s e ) , if  l = 1   T l ( f ( X b a s

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值