提到卡方检验,大家都觉得很简单
但是对于我这样理论不扎实,推崇操作至上的人来说,卡方检验也能有很多坑。
而且事实证明,不仅仅我踩过这些坑,我所见到的师姐师妹也有踩坑的。
最玄幻的就是,有的文章都发出去了,才发现有些地方不是很严谨。悄咪咪的感叹一句,审稿人其实也不是很认真,发的还是一篇核心呢
下面我们就一条一条说说那些可能犯的错误吧
1.
一般我们做卡方检验就直接用交叉表卡方了,但是SPSS还有一个非参数卡方,不知道大家注意过没有。
交叉表卡方用于独立性检验,用于考察两个变量之间是否存在关系。
非参数检验菜单下的卡方检验用于考察单组多分类变量的分类水平是否符合某特定比例。也就是判断分类变量分布与指定分布是否符合。如该分类变量不同组之间是否有差异,数据分布是否均匀。
2.
四格表卡方的条件:①n>40 ②T>5
如果出现n>40且1<T<5的情况,看第二行的校正值。
如果n<40或T<1,则看fisher检验的结果,注意fisher检验只得到一个P值
3.
列联表卡方的条件:①n>40 ②T<5的格子不超过百分之二十 ③ T>1
如果不满足以上条件,就得用fisher检验,没有啥校正值之类的东西。
4.
在列联表卡方的fisher确切概率法里,按理说我们应该也只得到一个P值,但有时候结果里面也会有卡方值的存在。这是怎么回事呢?这个“卡方值”能用吗?
好吧,这个“Fisher-Freeman-Halton”检验,它算出来的是一种基于双边概率的估算卡方值,听起来很神奇有木有,反正我是觉得很神奇。
5.
这个错我没犯过,但是我见过明明是单个案例一行的数据表做卡方硬要加权的。然后也不知道怎么加过来问我,这种其实是不需要加权的。造成这个的原因我觉得是百度经验看多了,又不看人家的数据和自己的形式是否一样,当然会错了。
这一条反之也适用,如果是汇总数据,一定要记得加权哦
6.
配对卡方检验。这个是我补充的。这玩意就在交叉表选项卡的statistics里面,我们勾选上McNemar就可以了。这个结果我们可以得到一个P值。
以上是操作,下面是理论
如果我们有一种新的研究方法,我们想要知道它能否替代我们已知靠谱的方法。那么我们就可以对它研究得到的结果进行分析。具体就是以下这种情况
以后再有接着补充