卡方检验spss步骤_卡方检验——那些我踩过的坑(很全)

5067359b6f4373015f0a0fc5f4f80caa.png

提到卡方检验,大家都觉得很简单

但是对于我这样理论不扎实,推崇操作至上的人来说,卡方检验也能有很多坑

而且事实证明,不仅仅我踩过这些坑,我所见到的师姐师妹也有踩坑的。

最玄幻的就是,有的文章都发出去了,才发现有些地方不是很严谨。悄咪咪的感叹一句,审稿人其实也不是很认真,发的还是一篇核心呢

下面我们就一条一条说说那些可能犯的错误吧

1.

一般我们做卡方检验就直接用交叉表卡方了,但是SPSS还有一个非参数卡方,不知道大家注意过没有。

交叉表卡方用于独立性检验,用于考察两个变量之间是否存在关系。

非参数检验菜单下的卡方检验用于考察单组多分类变量的分类水平是否符合某特定比例。也就是判断分类变量分布与指定分布是否符合。如该分类变量不同组之间是否有差异,数据分布是否均匀。

2.

四格表卡方的条件:①n>40 ②T>5

如果出现n>40且1<T<5的情况,看第二行的校正值。

如果n<40或T<1,则看fisher检验的结果,注意fisher检验只得到一个P值

3.

列联表卡方的条件:①n>40 ②T<5的格子不超过百分之二十 ③ T>1

如果不满足以上条件,就得用fisher检验,没有啥校正值之类的东西。

4.

在列联表卡方的fisher确切概率法里,按理说我们应该也只得到一个P值,但有时候结果里面也会有卡方值的存在。这是怎么回事呢?这个“卡方值”能用吗?

好吧,这个“Fisher-Freeman-Halton”检验,它算出来的是一种基于双边概率的估算卡方值,听起来很神奇有木有,反正我是觉得很神奇。

5.

这个错我没犯过,但是我见过明明是单个案例一行的数据表做卡方硬要加权的。然后也不知道怎么加过来问我,这种其实是不需要加权的。造成这个的原因我觉得是百度经验看多了,又不看人家的数据和自己的形式是否一样,当然会错了。

这一条反之也适用,如果是汇总数据,一定要记得加权哦

6.

配对卡方检验。这个是我补充的。这玩意就在交叉表选项卡的statistics里面,我们勾选上McNemar就可以了。这个结果我们可以得到一个P值。

以上是操作,下面是理论

如果我们有一种新的研究方法,我们想要知道它能否替代我们已知靠谱的方法。那么我们就可以对它研究得到的结果进行分析。具体就是以下这种情况

0b61a2c05e38199e7ad6e84a90f4511d.png
(1是阳性,0是阴性,频数是我编的)

以后再有接着补充

### 如何在SPSS中执行卡方检验 #### 数据准备 为了进行卡方检验,在SPSS中可以有两种式来组织数据。一种是仅定义一个用于存储实际样本值的变量;另一种则是定义两个变量,其中一个用来存放变量值,另一个则记录对应的观测频数,并将其设置为加权变量。对于后者而言,本案例中的加权变量即为人数组[^1]。 #### 前提条件 值得注意的是,当采用卡方检验时,基于皮尔逊定理的要求,应确保样本量足够大,通常建议不少于30个样本点。此外,还需注意每个单元格内的预期频数不宜过低,以免影响测试的有效性[^2]。 #### 执行过程 具体的操作流程如下所示: 进入`Analyze`菜单下的`Descriptive Statistics`选项里的`Crosstabs...`命令; 在此界面中分别选定行变量(Row(s))与列变量(Column(s)),并点击右侧箭头按钮将它们移入相应的框内; 接着切换至`Statistics...`子对话框勾选`Chi-square`复选框以激活卡方检验功能; 如果存在权重变量,则需要通过`Data`->`Weight Cases...`路径开启权重处理模式,选择`Weight cases by`并将事先设定好的频率变量作为权重依据输入进去; 最后确认无误后单击OK键提交运行请求等待输出结果窗口显示统计报告即可完成整个分析过程[^4]。 ```python # Python伪代码示意如何调用类似的功能接口(并非真实语法) analyze.crosstabs( row_variable="your_row_var", column_variable="your_column_var", statistics={"chi_square": True}, weight_by="frequency_variable" ).execute() ``` #### 结果解释 一旦获得了卡方检验的结果,应当仔细审查显著性水平(p-value),以此判断是否存在统计学意义上的关联性或差异。同时也要关注其他辅助指标如Pearson Chi-Square的具体数值及其自由度(df),从而面理解两组或多组分类资料之间的关系强度和向。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值