1,树状数组引入:(转载自链接:https://zhuanlan.zhihu.com/p/25185969)
(1)lowbit
int lowbit(int x)
{
return x&-x;
}
lowbit 它只保留"从低位向高位数,第一个数字1"作为运算结果
比如二进制数00011100,结果就是00000100,也就是4
我们每次执行操作(把位置x的值+k),只需要把"能管理到x的所有位置"都+k就行
那么怎样快速找到哪些位置能管理到x呢?
答案还是lowbit
我们先更新x,然后把x赋给一个新值,x+lowbit(x),那么新值依然可以管理到x;
(这样,每个包含x点的树状数组,都会+k)
单点修改
void add(int x,int k)
{
while(x<=n)
{
tree[x]+=k;
x+=lowbit(x);
}
} //维护树状数组
(2)求某区间所有数的和
int sum(int x)
{
int ans=0;
while(x!=0)
{
ans+=tree[x];
x-=lowbit(x);
}
return ans;
}
//询问区间[L,R]的和sum(L,R)。我们只需要求出sum(1,R)和sum(1,L-1),
//然后sum(1,R)-sum(1,L-1)就是sum(L,R)了
那么对于任意的x,sum(1,x)怎么求呢? (解释函数 int sum)
我们把最终得到的答案存在ans变量中,执行下面的操作:
(1)ans初始化为0
(2)ans加上x位置的值
(3)给x赋予新值 x-lowbit(x)
(4)如果x>0则跳回操作(2),否则结束算法。
举个例子介绍一下:
还记得吗,我们在进行"给原数组第x位置的数增加k"这个操作时,把"能管理到x的所有位置"都增加了k。
那么,对于任意一个位置,树状数组里的值就是"它能管理到的所有位置上,原数组的值之和"。
因此我们给答案加上树状数组第x位置的值,这里就得到了sum(5,6),因为6能管理[5,6]
然后给x减去lowbit(x),得到4。再加上x位置的值,也就是sum(1,4),因为4能管理[1,4]
再让x=x-lowbit(x),得到0,由于不再大于0,算法终止,得到答案。
这时答案恰好是sum(1,6)
依然可以证明,最多只需要进行log级别次数的查询。
(3)将某区间每一个数数加上 x;;求出某一个数的值。
差分:设数组a[]={1,6,8,5,10},那么差分数组b[]={1,5,2,-3,5}
也就是说b[i]=a[i]-a[i-1];(a[0]=0;),那么a[i]=b[1]+....+b[i];
对区间[x,y]进行修改,只用修改b[x]与b[y+1]:[1]
问题解决:用差分的方法,区间[l,r]所有值+k改成"位置l加上k,位置r+1减去k"
高级树状数组用法 (高级树状数组--区间修改区间查询、二维树状数组 - 胡小兔 - 博客园)
(这些足以应对线段树)
1.单点修改 + 区间查询
最简单的树状数组就是这样的:
void add(int p, int x){ //给位置p增加x
while(p <= n) sum[p] += x, p += lowbit(p);
}
int ask(int p){ //求位置p的前缀和
int res = 0;
while(p) res += sum[p], p -= lowbit(p);
return res;
}
int range_ask(int l, int r){ //区间求和
return ask(r) - ask(l - 1);
}
2.区间修改 + 单点查询
通过“差分”(就是记录数组中每个元素与前一个元素的差),可以把这个问题转化为问题1。
查询
设原数组为a[i]a[i], 设数组d[i]=a[i]−a[i−1](a[0]=0)d[i]=a[i]−a[i−1](a[0]=0),则 a[i]=∑ij=1d[j]a[i]=∑j=1id[j],可以通过求d[i]d[i]的前缀和查询。
修改
当给区间[l,r][l,r]加上x的时候,a[l]a[l] 与前一个元素 a[l−1]a[l−1] 的差增加了xx,a[r+1]a[r+1] 与 a[r]a[r] 的差减少了xx。根据d[i]d[i]数组的定义,只需给d[l]d[l] 加上 xx, 给d[r+1]d[r+1] 减去 xx 即可。
void add(int p, int x){ //这个函数用来在树状数组中直接修改
while(p <= n) sum[p] += x, p += p & -p;
}
void range_add(int l, int r, int x){ //给区间[l, r]加上x
add(l, x), add(r + 1, -x);
}
int ask(int p){ //单点查询
int res = 0;
while(p) res += sum[p], p -= p & -p;
return res;
}
3. 区间修改 + 区间查询
这是最常用的部分,也是用线段树写着最麻烦的部分——但是现在我们有了树状数组!
怎么求呢?我们基于问题2的“差分”思路,考虑一下如何在问题2构建的树状数组中求前缀和:
位置p的前缀和 =
∑i=1pa[i]=∑i=1p∑j=1id[j]∑i=1pa[i]=∑i=1p∑j=1id[j]
在等式最右侧的式子∑pi=1∑ij=1d[j]∑i=1p∑j=1id[j]中,d[1]d[1] 被用了pp次,d[2]d[2]被用了p−1p−1次……那么我们可以写出:
位置p的前缀和 =
∑i=1p∑j=1id[j]=∑i=1pd[i]∗(p−i+1)=(p+1)∗∑i=1pd[i]−∑i=1pd[i]∗i∑i=1p∑j=1id[j]=∑i=1pd[i]∗(p−i+1)=(p+1)∗∑i=1pd[i]−∑i=1pd[i]∗i
那么我们可以维护两个数组的前缀和:
一个数组是 sum1[i]=d[i]sum1[i]=d[i],
另一个数组是 sum2[i]=d[i]∗isum2[i]=d[i]∗i。
查询
位置p的前缀和即: (p + 1) * sum1数组中p的前缀和 - sum2数组中p的前缀和。
区间[l, r]的和即:位置r的前缀和 - 位置l的前缀和。
修改
对于sum1数组的修改同问题2中对d数组的修改。
对于sum2数组的修改也类似,我们给 sum2[l] 加上 l * x,给 sum2[r + 1] 减去 (r + 1) * x。
void add(ll p, ll x){
for(int i = p; i <= n; i += i & -i)
sum1[i] += x, sum2[i] += x * p;
}
void range_add(ll l, ll r, ll x){
add(l, x), add(r + 1, -x);
}
ll ask(ll p){
ll res = 0;
for(int i = p; i; i -= i & -i)
res += (p + 1) * sum1[i] - sum2[i];
return res;
}
ll range_ask(ll l, ll r){
return ask(r) - ask(l - 1);
}
4. 二维树状数组
我们已经学会了对于序列的常用操作,那么我们不由得想到(谁会想到啊喂)……能不能把类似的操作应用到矩阵上呢?这时候我们就要写二维树状数组了!
在一维树状数组中,tree[x](树状数组中的那个“数组”)记录的是右端点为x、长度为lowbit(x)的区间的区间和。
那么在二维树状数组中,可以类似地定义tree[x][y]记录的是右下角为(x, y),高为lowbit(x), 宽为 lowbit(y)的区间的区间和。
单点修改 + 区间查询
void add(int x, int y, int z){ //将点(x, y)加上z
int memo_y = y;
while(x <= n){
y = memo_y;
while(y <= n)
tree[x][y] += z, y += y & -y;
x += x & -x;
}
}
void ask(int x, int y){//求左上角为(1,1)右下角为(x,y) 的矩阵和
int res = 0, memo_y = y;
while(x){
y = memo_y;
while(y)
res += tree[x][y], y -= y & -y;
x -= x & -x;
}
}
区间修改 + 单点查询
我们对于一维数组进行差分,是为了使差分数组前缀和等于原数组对应位置的元素。
那么如何对二维数组进行差分呢?可以针对二维前缀和的求法来设计方案。
二维前缀和:
sum[i][j]=sum[i−1][j]+sum[i][j−1]−sum[i−1][j−1]+a[i][j]sum[i][j]=sum[i−1][j]+sum[i][j−1]−sum[i−1][j−1]+a[i][j]
那么我们可以令差分数组d[i][j]d[i][j] 表示 a[i][j]a[i][j] 与 a[i−1][j]+a[i][j−1]−a[i−1][j−1]a[i−1][j]+a[i][j−1]−a[i−1][j−1] 的差。
例如下面这个矩阵
1 4 8
6 7 2
3 9 5
对应的差分数组就是
1 3 4
5 -2 -9
-3 5 1
当我们想要将一个矩阵加上x时,怎么做呢?
下面是给最中间的3*3矩阵加上x时,差分数组的变化:
0 0 0 0 0
0 +x 0 0 -x
0 0 0 0 0
0 0 0 0 0
0 -x 0 0 +x
这样给修改差分,造成的效果就是:
0 0 0 0 0
0 x x x 0
0 x x x 0
0 x x x 0
0 0 0 0 0
那么我们开始写代码吧!
void add(int x, int y, int z){
int memo_y = y;
while(x <= n){
y = memo_y;
while(y <= n)
tree[x][y] += z, y += y & -y;
x += x & -x;
}
}
void range_add(int xa, int ya, int xb, int yb, int z){
add(xa, ya, z);
add(xa, yb + 1, -z);
add(xb + 1, ya, -z);
add(xb + 1, yb + 1, z);
}
void ask(int x, int y){
int res = 0, memo_y = y;
while(x){
y = memo_y;
while(y)
res += tree[x][y], y -= y & -y;
x -= x & -x;
}
}
区间修改 + 区间查询
类比之前一维数组的区间修改区间查询,下面这个式子表示的是点(x, y)的二维前缀和:
那么我们要开四个树状数组,分别维护:
d[i][j],d[i][j]∗i,d[i][j]∗j,d[i][j]∗i∗jd[i][j],d[i][j]∗i,d[i][j]∗j,d[i][j]∗i∗j
这样就完成了!
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
typedef long long ll;
ll read(){
char c; bool op = 0;
while((c = getchar()) < '0' || c > '9')
if(c == '-') op = 1;
ll res = c - '0';
while((c = getchar()) >= '0' && c <= '9')
res = res * 10 + c - '0';
return op ? -res : res;
}
const int N = 205;
ll n, m, Q;
ll t1[N][N], t2[N][N], t3[N][N], t4[N][N];
void add(ll x, ll y, ll z){
for(int X = x; X <= n; X += X & -X)
for(int Y = y; Y <= m; Y += Y & -Y){
t1[X][Y] += z;
t2[X][Y] += z * x;
t3[X][Y] += z * y;
t4[X][Y] += z * x * y;
}
}
void range_add(ll xa, ll ya, ll xb, ll yb, ll z){ //(xa, ya) 到 (xb, yb) 的矩形
add(xa, ya, z);
add(xa, yb + 1, -z);
add(xb + 1, ya, -z);
add(xb + 1, yb + 1, z);
}
ll ask(ll x, ll y){
ll res = 0;
for(int i = x; i; i -= i & -i)
for(int j = y; j; j -= j & -j)
res += (x + 1) * (y + 1) * t1[i][j]
- (y + 1) * t2[i][j]
- (x + 1) * t3[i][j]
+ t4[i][j];
return res;
}
ll range_ask(ll xa, ll ya, ll xb, ll yb){
return ask(xb, yb) - ask(xb, ya - 1) - ask(xa - 1, yb) + ask(xa - 1, ya - 1);
}
int main(){
n = read(), m = read(), Q = read();
for(int i = 1; i <= n; i++){
for(int j = 1; j <= m; j++){
ll z = read();
range_add(i, j, i, j, z);
}
}
while(Q--){
ll ya = read(), xa = read(), yb = read(), xb = read(), z = read(), a = read();
if(range_ask(xa, ya, xb, yb) < z * (xb - xa + 1) * (yb - ya + 1))
range_add(xa, ya, xb, yb, a);
}
for(int i = 1; i <= n; i++){
for(int j = 1; j <= m; j++)
printf("%lld ", range_ask(i, j, i, j));
putchar('n');
}
return 0;
}
参考
- ^概念引入