pandas根据列名提取数据_pandas常用操作总结

本文详细介绍了pandas库在数据处理中的常见操作,包括创建Series和DataFrame,选择数据、设置值、处理丢失数据的方法。通过示例展示了如何根据列名提取数据、对数据框进行排序、选择数据行和列,以及如何处理NaN值。此外,还涵盖了pandas的导入导出功能以及数据合并的concat和merge方法。
摘要由CSDN通过智能技术生成

023190284f5c0eab6804f484f296716e.png

pandas基本介绍

s=pd.Series([1,3,6,np.nan,4,1]) #创建一个Series序列
df=pd.DataFrame(np.random.randn(6,4),index=dates,columns=[‘a’,’b’,’c’,’d’]) #创建一个DataFrame数据框
df1=pd.DataFrame({‘A’:1,
‘B’:pd.Timestamp(‘20130102’),
‘C’:pd.Series(1,index=list(range(4),dtype=’int32’,
‘D’:np.array([3]*4,dtype=’int32’),
‘E’:pd.Categorical([“test”,”train”,”test”,”train”]),
‘F’:’foo’}) #另一种创建DataFrame的方式
df1.dtypes #给出数据框每一列的数据形式
df1.index #返回数据框的index
df1.columns #返回数据框的columns
df1.values #输出数据框所有的values
df1.describe() #会给出数据框的一些统计数据,如count,mean,std,min等
df1.T #数据框转置
df1.sort_index(axis=1,ascending=False) #axis=1,对df1的列进行排序,ascending=False则倒序排列)
df1.sort_values(by&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值