今天我们谈一下R中的颜色系统。
一般R中的作图函数,也就是说,即使我们不特定指定颜色,一般的作图函数,也会有自己默认的颜色。但是很多时候,这些颜色并不是很美观,所以适当地改变配色,对我们的工作有一定的意义。然后我们下面介绍一下R中的颜色系统。
注:
1、R中有4种颜色表达方式
- palette中的颜色,直接使用数字指定相应的颜色
- 颜色名,如“green”“blue”“red”等等颜色的名称
- 使用rgb函数得到的返回颜色
- 使用十六进制颜色代码,如"#FF0000"等等
2、R很难直接查看某种颜色(直接根据上面的四种表达方式),所以一个好的办法是使用plot,指定颜色col,得到一张带颜色的图
> palette()
[1] "black" "red" "green3" "blue" "cyan" "magenta" "yellow" "gray"
> barplot(1:4, col = 1:4)
一、grDevices
grDevices是R默认安装的包,使用的时候不用加载即可以使用,这个函数有几个颜色的函数。
1、 首先是palette()这个函数
可以理解为R自带的一个简单调色板,可以通过指定颜色为数字的方式,直接使用颜色
#查看当前palette中的颜色
palette()
[1] "black" "red" "green3" "blue" "cyan" "magenta" "yellow" "gray"
#用barplot查看颜色
barplot(1:8, col = 1:8)
#注意:
#palette里面颜色是可以改变的,一般不指定是默认的颜色,即上面显示的8种颜色
#如果演变了palette里面的颜色,可以通过设置palette的参数为default的方式将颜色改变成默认颜色
> palette(gray(c(0.1,0.2, 0.3)))
> palette()
[1] "gray10" "gray20" "gray30"
#改回default
> palette("default")
> palette()
[1] "black" "red" "green3" "blue" "cyan" "magenta" "yellow" "gray"
2、colors函数
colors()函数会返回657种R种可使用的颜色的名字,具体想看那种颜色的话可以通过barplot或者pie图的方式查看
#colors()共有657种颜色
> head(colors())
[1] "white" "aliceblue" "antiquewhite" "antiquewhite1" "antiquewhite2"
[6] "antiquewhite3"
3、colorRamp和colorRampPalette
colorRampPalette比较容易理解,就是颜色的渐变色混合。
colorRamp则有些不同,因为颜色是使用rgb来表示的,输入参数为0到1之间的值,输出的颜色会根据输入值进行组合,得到的rgb颜色会和colorRampPalette有所不同。
共同点是上面两个函数输入值以后,都返回的是一个函数,需要进一步指定函数的输入值,才能得到颜色。
可参考下面的解释:
colorRamp 和 colorRampPalette 函数
这两个函数会接受一个色彩向量作为输入, 指定颜色变换的节点, 其返回值均是一个函数, 该返回的函数可以根据需要返回计算出的位于指定的颜色节点之间的过渡颜色. 区别在于, colorRamp 的返回函数接受的输入值为 0 到 1 的数字, 返回相对应的 RGB 颜色, 而 colorRampPalette 则接受一个整数, 返回相应数量的颜色作为调色板.
R 学习笔记:R 色彩
二、RColorBrewer
RColorBrewer包是一个有用的配色包,我们可以直接使用上面的颜色作图,需要先安装这个package。
里面的颜色适合三种情况:
- sequential,连续型,适合连续型的数值变量
- diverging,极端型,适合数据存在极端值,中间变化不大,两边变化较大的情况
- qualitative,离散型,变化互不相关,如因子变量等
RColorBrewer比较简单,里面基本上只有几个可用函数,如下
brewer.pal
makes the color palettes from ColorBrewer available as R palettes. 使用brewer.pal选取颜色display.brewer.pal()
displays the selected palette in a graphics window.display.brewer.all()
displays the a few palettes simultanueously in a graphics window.brewer.pal.info
returns information about the available palettes as a dataframe.brewer.pal.info
is not a function, it is a variable. This might change in the future.
#使用brewer.pal.info查看颜色信息
> head(brewer.pal.info)
maxcolors category colorblind
BrBG 11 div TRUE
PiYG 11 div TRUE
PRGn 11 div TRUE
PuOr 11 div TRUE
RdBu 11 div TRUE
RdGy 11 div FALSE
#使用display.brewer.all()查看所有可用颜色
> display.brewer.all()
#举例说明
pal <- colorRamp(c("red", "blue"))
pal(0)
pal(1)
barplot(1:10, 1:10, col = pal(seq(0, 1, len = 10)))
#####################
pal <- colorRampPalette(c("red", "yellow"))
pal(1)
pal(2)
barplot(1:10, 1:10, col = pal(10))
#######################
library(RColorBrewer)
brewer.pal.info
display.brewer.all()
display.brewer.pal(10, "Spectral")
display.brewer.pal(13, "RdGy")
barplot(1:10, 1:10, col = brewer.pal(10, "YlOrRd"))
barplot(1:9, 1:9, col = brewer.pal(9, "Blues"))
barplot(1:9, 1:9, col = brewer.pal(9, "Spectral"))
barplot(1:9, 1:9, col = brewer.pal(9, "Set1"))
########################################
cols <- brewer.pal(3, "Spectral")
cols
pal <- colorRampPalette(cols)
image(volcano, col = pal(10))
image(volcano, col = pal(20))
image(volcano, col = pal(50))
image(volcano, col = pal(100))
image(volcano, col = pal(20000))
最后提一下rgb函数,其中alpha为透明度,0为完全透明,1为完全不透明
> str(rgb)
function (red, green, blue, alpha, names = NULL, maxColorValue = 1)
注,我们上面讲的基本上涉及到了RGB的表达方式,计算机中的颜色表达可以有多重方式,如RGB、HSV、HSL等,我个人认为了解即可,如需进一步了解,可参考
- R 学习笔记:R 色彩
参考资料:
[R包]R语言中的色彩和调色板
R 学习笔记:R 色彩
R语言中的色彩
[转载] R中的颜色-SongtaoGui
Coursera | Exploratory-data-analysis